19 resultados para symbolic computation
Resumo:
ACM Computing Classification System (1998): G.1.1, G.1.2.
Resumo:
This article presents the principal results of the doctoral thesis “Direct Operational Methods in the Environment of a Computer Algebra System” by Margarita Spiridonova (Institute of mathematics and Informatics, BAS), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 23 March, 2009.
Resumo:
We have been investigating the cryptographical properties of in nite families of simple graphs of large girth with the special colouring of vertices during the last 10 years. Such families can be used for the development of cryptographical algorithms (on symmetric or public key modes) and turbocodes in error correction theory. Only few families of simple graphs of large unbounded girth and arbitrarily large degree are known. The paper is devoted to the more general theory of directed graphs of large girth and their cryptographical applications. It contains new explicit algebraic constructions of in finite families of such graphs. We show that they can be used for the implementation of secure and very fast symmetric encryption algorithms. The symbolic computations technique allow us to create a public key mode for the encryption scheme based on algebraic graphs.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
* This work has been partially supported by Spanish Project TIC2003-9319-c03-03 “Neural Networks and Networks of Evolutionary Processors”.
Resumo:
Usually, generalization is considered as a function of learning from a set of examples. In present work on the basis of recent neural network assembly memory model (NNAMM), a biologically plausible 'grandmother' model for vision, where each separate memory unit itself can generalize, has been proposed. For such a generalization by computation through memory, analytical formulae and numerical procedure are found to calculate exactly the perfectly learned memory unit's generalization ability. The model's memory has complex hierarchical structure, can be learned from one example by a one-step process, and may be considered as a semi-representational one. A simple binary neural network for bell-shaped tuning is described.
Resumo:
* Supported by INTAS 00-626 and TIC 2003-09319-c03-03.
Resumo:
We extend our previous work into error-free representations of transform basis functions by presenting a novel error-free encoding scheme for the fast implementation of a Linzer-Feig Fast Cosine Transform (FCT) and its inverse. We discuss an 8x8 L-F scaled Discrete Cosine Transform where the architecture uses a new algebraic integer quantization of the 1-D radix-8 DCT that allows the separable computation of a 2-D DCT without any intermediate number representation conversions. The resulting architecture is very regular and reduces latency by 50% compared to a previous error-free design, with virtually the same hardware cost.
Resumo:
In this paper, a modification for the high-order neural network (HONN) is presented. Third order networks are considered for achieving translation, rotation and scale invariant pattern recognition. They require however much storage and computation power for the task. The proposed modified HONN takes into account a priori knowledge of the binary patterns that have to be learned, achieving significant gain in computation time and memory requirements. This modification enables the efficient computation of HONNs for image fields of greater that 100 × 100 pixels without any loss of pattern information.
Resumo:
This paper presents an extended behavior of networks of evolutionary processors. Usually, such nets are able to solve NP-complete problems working with symbolic information. Information can evolve applying rules and can be communicated though the net provided some constraints are verified. These nets are based on biological behavior of membrane systems, but transformed into a suitable computational model. Only symbolic information is communicated. This paper proposes to communicate evolution rules as well as symbolic information. This idea arises from the DNA structure in living cells, such DNA codes information and operations and it can be sent to other cells. Extended nets could be considered as a superset of networks of evolutionary processors since permitting and forbidden constraints can be written in order to deny rules communication.
Resumo:
Linguistic theory, cognitive, information, and mathematical modeling are all useful while we attempt to achieve a better understanding of the Language Faculty (LF). This cross-disciplinary approach will eventually lead to the identification of the key principles applicable in the systems of Natural Language Processing. The present work concentrates on the syntax-semantics interface. We start from recursive definitions and application of optimization principles, and gradually develop a formal model of syntactic operations. The result – a Fibonacci- like syntactic tree – is in fact an argument-based variant of the natural language syntax. This representation (argument-centered model, ACM) is derived by a recursive calculus that generates a mode which connects arguments and expresses relations between them. The reiterative operation assigns primary role to entities as the key components of syntactic structure. We provide experimental evidence in support of the argument-based model. We also show that mental computation of syntax is influenced by the inter-conceptual relations between the images of entities in a semantic space.
Resumo:
A major drawback of artificial neural networks is their black-box character. Therefore, the rule extraction algorithm is becoming more and more important in explaining the extracted rules from the neural networks. In this paper, we use a method that can be used for symbolic knowledge extraction from neural networks, once they have been trained with desired function. The basis of this method is the weights of the neural network trained. This method allows knowledge extraction from neural networks with continuous inputs and output as well as rule extraction. An example of the application is showed. This example is based on the extraction of average load demand of a power plant.
Resumo:
* Supported by projects CCG08-UAM TIC-4425-2009 and TEC2007-68065-C03-02
Resumo:
Toric coordinates and toric vector field have been introduced in [2]. Let A be an arbitrary vector field. We obtain formulae for the divA, rotA and the Laplace operator in toric coordinates.
Resumo:
We discuss some main points of computer-assisted proofs based on reliable numerical computations. Such so-called self-validating numerical methods in combination with exact symbolic manipulations result in very powerful mathematical software tools. These tools allow proving mathematical statements (existence of a fixed point, of a solution of an ODE, of a zero of a continuous function, of a global minimum within a given range, etc.) using a digital computer. To validate the assertions of the underlying theorems fast finite precision arithmetic is used. The results are absolutely rigorous. To demonstrate the power of reliable symbolic-numeric computations we investigate in some details the verification of very long periodic orbits of chaotic dynamical systems. The verification is done directly in Maple, e.g. using the Maple Power Tool intpakX or, more efficiently, using the C++ class library C-XSC.