23 resultados para Variational inequalities
Resumo:
∗ The final version of this paper was sent to the editor when the author was supported by an ARC Small Grant of Dr. E. Tarafdar.
Resumo:
The generalized Wiener-Hopf equation and the approximation methods are used to propose a perturbed iterative method to compute the solutions of a general class of nonlinear variational inequalities.
Resumo:
This paper develops the results announced in the Note [14]. Using an eigenvalue problem governed by a variational inequality, we try to unify the theory concerning the post-critical equilibrium state of a thin elastic plate subjected to unilateral conditions.
Resumo:
* This work was completed while the author was visiting the University of Limoges. Support from the laboratoire “Analyse non-linéaire et Optimisation” is gratefully acknowledged.
Resumo:
* Supported by Ministero dell’Università e della Ricerca Scientifica e Tecnologica (40% – 1993). ** Supported by Ministero dell’Università e della Ricerca Scientifica e Tecnologica (40% – 1993).
Resumo:
Due to wide range of interest in use of bio-economic models to gain insight into the scientific management of renewable resources like fisheries and forestry,variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort prey harvesting.The results are compared with the results obtained by Adomian decomposition method and reveal that VIM is very effective and convenient for solving nonlinear differential equations.
Resumo:
We prove that in some classes of optimization problems, like lower semicontinuous functions which are bounded from below, lower semi-continuous or continuous functions which are bounded below by a coercive function and quasi-convex continuous functions with the topology of the uniform convergence, the complement of the set of well-posed problems is σ-porous. These results are obtained as realization of a theorem extending a variational principle of Ioffe-Zaslavski.
Resumo:
We prove some multiplicity results concerning quasilinear elliptic equations with natural growth conditions. Techniques of nonsmooth critical point theory are employed.
Resumo:
Mathematics Subject Classification: 42B35, 35L35, 35K35
Resumo:
2000 Mathematics Subject Classification: 26A33, 33C60, 44A15, 35K55
Resumo:
Mathematics Subject Classification: 47A56, 47A57,47A63
Resumo:
The paper presents an example of methodological approach to the development of variational thinking skills in teaching programming. Various ways in solving a given task are implemented for the purpose. One of the forms, through which the variational thinking is manifested, is related to trail practical actions. In the process of comprehension of the properties thus acquired, students are doing their own (correct or incorrect) conclusions for other, hidden properties and at the same time they discover possibilities for new ways of action and acquiring of new effects. The variability and the generalizing function of thinking are in a close interrelation, and their interaction to a great extend determines the dynamics of the cognitive activity of the student.
Resumo:
Some new nonlinear integral inequalities that involve the maximum of the unknown scalar function of one variable are solved. The considered inequalities are generalizations of the classical nonlinear integral inequality of Bihari. The importance of these integral inequalities is defined by their wide applications in qualitative investigations of differential equations with "maxima" and it is illustrated by some direct applications.
Resumo:
MSC 2010: 30A10, 30B10, 30B30, 30B50, 30D15, 33E12
Resumo:
2000 Mathematics Subject Classification: 47H04, 65K10.