17 resultados para Stochastic ODEs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accelerated probabilistic modeling algorithms, presenting stochastic local search (SLS) technique, are considered. General algorithm scheme and specific combinatorial optimization method, using “golden section” rule (GS-method), are given. Convergence rates using Markov chains are received. An overview of current combinatorial optimization techniques is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* This research was supported by a grant from the Greek Ministry of Industry and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formal grammars can used for describing complex repeatable structures such as DNA sequences. In this paper, we describe the structural composition of DNA sequences using a context-free stochastic L-grammar. L-grammars are a special class of parallel grammars that can model the growth of living organisms, e.g. plant development, and model the morphology of a variety of organisms. We believe that parallel grammars also can be used for modeling genetic mechanisms and sequences such as promoters. Promoters are short regulatory DNA sequences located upstream of a gene. Detection of promoters in DNA sequences is important for successful gene prediction. Promoters can be recognized by certain patterns that are conserved within a species, but there are many exceptions which makes the promoter recognition a complex problem. We replace the problem of promoter recognition by induction of context-free stochastic L-grammar rules, which are later used for the structural analysis of promoter sequences. L-grammar rules are derived automatically from the drosophila and vertebrate promoter datasets using a genetic programming technique and their fitness is evaluated using a Support Vector Machine (SVM) classifier. The artificial promoter sequences generated using the derived L- grammar rules are analyzed and compared with natural promoter sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 76M35, 82B31

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stochastic arithmetic has been developed as a model for exact computing with imprecise data. Stochastic arithmetic provides confidence intervals for the numerical results and can be implemented in any existing numerical software by redefining types of the variables and overloading the operators on them. Here some properties of stochastic arithmetic are further investigated and applied to the computation of inner products and the solution to linear systems. Several numerical experiments are performed showing the efficiency of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 26A33, 35R11, 35R60, 35Q84, 60H10 Dedicated to 80-th anniversary of Professor Rudolf Gorenflo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Косто В. Митов - Разклоняващите се стохастични процеси са модели на популационната динамика на обекти, които имат случайно време на живот и произвеждат потомци в съответствие с дадени вероятностни закони. Типични примери са ядрените реакции, клетъчната пролиферация, биологичното размножаване, някои химични реакции, икономически и финансови явления. В този обзор сме се опитали да представим съвсем накратко някои от най-важните моменти и факти от историята, теорията и приложенията на разклоняващите се процеси.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMS subject classification: 90C31, 90A09, 49K15, 49L20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 65C05

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 62M10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classi cation: 49L60, 60J60, 93E20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62J05, 62G35

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60H15, 60H40

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62P99, 68T50