18 resultados para P-Compact Space
Resumo:
∗ Supported by the Serbian Scientific Foundation, grant No 04M01
Resumo:
∗ Supported by Research grants GAUK 190/96 and GAUK 1/1998
Resumo:
∗ The first named author’s research was partially supported by GAUK grant no. 350, partially by the Italian CNR. Both supports are gratefully acknowledged. The second author was supported by funds of Italian Ministery of University and by funds of the University of Trieste (40% and 60%).
Resumo:
Let (X, d) be a metric space and CL(X) the family of all nonempty closed subsets of X. We provide a new proof of the fact that the coincidence of the Vietoris and Wijsman topologies induced by the metric d forces X to be a compact space. In the literature only a more involved and indirect proof using the proximal topology is known. Here we do not need this intermediate step. Moreover we prove that (X, d) is boundedly compact if and only if the bounded Vietoris and Wijsman topologies on CL(X) coincide.
Resumo:
It is proved that a representable non-separable Banach space does not admit uniformly Gâteaux-smooth norms. This is true in particular for C(K) spaces where K is a separable non-metrizable Rosenthal compact space.
Resumo:
We give a new construction of uniformly convex norms with a power type modulus on super-reflexive spaces based on the notion of dentability index. Furthermore, we prove that if the Szlenk index of a Banach space is less than or equal to ω (first infinite ordinal) then there is an equivalent weak* lower semicontinuous positively homogeneous functional on X* satisfying the uniform Kadec-Klee Property for the weak*-topology (UKK*). Then we solve the UKK or UKK* renorming problems for Lp(X) spaces and C(K) spaces for K scattered compact space.
Resumo:
2000 Mathematics Subject Classification: 46B26, 46B03, 46B04.
Resumo:
2000 Mathematics Subject Classification: Primary: 46B03, 46B26. Secondary: 46E15, 54C35.
Multipliers on Spaces of Functions on a Locally Compact Abelian Group with Values in a Hilbert Space
Resumo:
2000 Mathematics Subject Classification: Primary 43A22, 43A25.
Resumo:
2000 Mathematics Subject Classification: 46B30, 46B03.
Resumo:
A γ-space with a strictly positive measure is separable. An example of a non-separable γ−space with c.c.c. is given. A P−space with c.c.c. is countable and discrete.
Resumo:
Let a compact Hausdorff space X contain a non-empty perfect subset. If α < β and β is a countable ordinal, then the Banach space Bα (X) of all bounded real-valued functions of Baire class α on X is a proper subspace of the Banach space Bβ (X). In this paper it is shown that: 1. Bα (X) has a representation as C(bα X), where bα X is a compactification of the space P X – the underlying set of X in the Baire topology generated by the Gδ -sets in X. 2. If 1 ≤ α < β ≤ Ω, where Ω is the first uncountable ordinal number, then Bα (X) is uncomplemented as a closed subspace of Bβ (X). These assertions for X = [0, 1] were proved by W. G. Bade [4] and in the case when X contains an uncountable compact metrizable space – by F.K.Dashiell [9]. Our argumentation is one non-metrizable modification of both Bade’s and Dashiell’s methods.
Resumo:
Let E be an infinite dimensional separable space and for e ∈ E and X a nonempty compact convex subset of E, let qX(e) be the metric antiprojection of e on X. Let n ≥ 2 be an arbitrary integer. It is shown that for a typical (in the sence of the Baire category) compact convex set X ⊂ E the metric antiprojection qX(e) has cardinality at least n for every e in a dense subset of E.
Resumo:
Mathematics Subject Classification: 47A56, 47A57,47A63
Resumo:
AMS Subj. Classification: MSC2010: 42C10, 43A50, 43A75