17 resultados para Hilbert space
Resumo:
Mathematics Subject Classification: 47A56, 47A57,47A63
Multipliers on Spaces of Functions on a Locally Compact Abelian Group with Values in a Hilbert Space
Resumo:
2000 Mathematics Subject Classification: Primary 43A22, 43A25.
Resumo:
2000 Mathematics Subject Classification: 42A45.
Resumo:
Let H be a real Hilbert space and T be a maximal monotone operator on H. A well-known algorithm, developed by R. T. Rockafellar [16], for solving the problem (P) ”To find x ∈ H such that 0 ∈ T x” is the proximal point algorithm. Several generalizations have been considered by several authors: introduction of a perturbation, introduction of a variable metric in the perturbed algorithm, introduction of a pseudo-metric in place of the classical regularization, . . . We summarize some of these extensions by taking simultaneously into account a pseudo-metric as regularization and a perturbation in an inexact version of the algorithm.
Resumo:
We work on the research of a zero of a maximal monotone operator on a real Hilbert space. Following the recent progress made in the context of the proximal point algorithm devoted to this problem, we introduce simultaneously a variable metric and a kind of relaxation in the perturbed Tikhonov’s algorithm studied by P. Tossings. So, we are led to work in the context of the variational convergence theory.
Resumo:
The general ordinary quasi-differential expression M of n-th order with complex coefficients and its formal adjoint M + are considered over a regoin (a, b) on the real line, −∞ ≤ a < b ≤ ∞, on which the operator may have a finite number of singular points. By considering M over various subintervals on which singularities occur only at the ends, restrictions of the maximal operator generated by M in L2|w (a, b) which are regularly solvable with respect to the minimal operators T0 (M ) and T0 (M + ). In addition to direct sums of regularly solvable operators defined on the separate subintervals, there are other regularly solvable restrications of the maximal operator which involve linking the various intervals together in interface like style.
Resumo:
Let X be a closed subspace of B(H) for some Hilbert space H. In [9], Pisier introduced Sp [X] (1 ≤ p ≤ +∞) by setting Sp [X] = (S∞ [X] , S1 [X])θ , (where θ =1/p , S∞ [X] = S∞ ⊗min X and S1 [X] = S1 ⊗∧ X) and showed that there are p−matricially normed spaces. In this paper we prove that conversely, if X is a p−matricially normed space with p = 1, then there is an operator structure on X, such that M1,n (X) = S1 [X] where Sn,1 [X] is the finite dimentional version of S1 [X]. For p = 1, we have no answer.
Resumo:
Reproducing Kernel Hilbert Space (RKHS) and Reproducing Transformation Methods for Series Summation that allow analytically obtaining alternative representations for series in the finite form are developed.
Resumo:
2000 Mathematics Subject Classification: 60H15, 60H40
Resumo:
2000 Mathematics Subject Classification: 18B30, 47A12.
Resumo:
2000 Mathematics Subject Classification: Primary 47B47, 47B10; Secondary 47A30.
Resumo:
2000 Mathematics Subject Classification: Primary: 47B47, 47B10; secondary 47A30.
Resumo:
2000 Mathematics Subject Classification: 47A10, 47A12, 47A30, 47B10, 47B20, 47B37, 47B47, 47D50.
Resumo:
Let E be an infinite dimensional separable space and for e ∈ E and X a nonempty compact convex subset of E, let qX(e) be the metric antiprojection of e on X. Let n ≥ 2 be an arbitrary integer. It is shown that for a typical (in the sence of the Baire category) compact convex set X ⊂ E the metric antiprojection qX(e) has cardinality at least n for every e in a dense subset of E.
Resumo:
MSC 2010: 30C60