12 resultados para stoichiometry

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface compositional changes in GaAs due to RF plasmas of different gases have been investigated by XPS and etch rates were measured using AFM. Angular Resolved XPS (ARXPS) was also employed for depth analysis of the composition of the surface layers. An important role in this study was determination of oxide thickness using XPS data. The study of surface - plasma interaction was undertaken by correlating results of surface analysis with plasma diagnosis. Different experiments were designed to accurately measure the BEs associated with the Ga 3d, Ga 2P3/2 and LMM peaks using XPS analysis and propose identification in terms of the oxides of GaAs. Along with GaAs wafers, some reference compounds such as metallic Ga and Ga2O3 powder were used. A separate study aiming the identification of the GaAs surface oxides formed on the GaAs surface during and after plasma processing was undertaken. Surface compositional changes after plasma treatment, prior to surface analysis are considered, with particular reference to the oxides formed in the air on the activated surface. Samples exposed to ambient air for different periods of time and also to pure oxygen were analysed. Models of surface processes were proposed for explanation of the stoichiometry changes observed with the inert and reactive plasmas used. In order to help with the understanding of the mechanisms responsible for surface effects during plasma treatment, computer simulation using SRIM code was also undertaken. Based on simulation and experimental results, models of surface phenomena are proposed. Discussion of the experimental and simulated results is made in accordance with current theories and published results of different authors. The experimental errors introduced by impurities and also by data acquisition and processing are also evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis is divided into four chapters. They are: introduction, experimental, results and discussion about the free ligands and results and discussion about the complexes. The First Chapter, the introductory chapter, is a general introduction to the study of solid state reactions. The Second Chapter is devoted to the materials and experimental methods that have been used for carrying out tile experiments. TIle Third Chapter is concerned with the characterisations of free ligands (Picolinic acid, nicotinic acid, and isonicotinic acid) by using elemental analysis, IR spectra, X-ray diffraction, and mass spectra. Additionally, the thermal behaviour of free ligands in air has been studied by means of thermogravimetry (TG), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC) measurements. The behaviour of thermal decomposition of the three free ligands was not identical Finally, a computer program has been used for kinetic evaluation of non-isothermal differential scanning calorimetry data according to a composite and single heating rate methods in comparison with the methods due to Ozawa and Kissinger methods. The most probable reaction mechanism for the free ligands was the Avrami-Erofeev equation (A) that described the solid-state nucleation-growth mechanism. The activation parameters of the decomposition reaction for free ligands were calculated and the results of different methods of data analysis were compared and discussed. The Fourth Chapter, the final chapter, deals with the preparation of cobalt, nickel, and copper with mono-pyridine carboxylic acids in aqueous solution. The prepared complexes have been characterised by analyses, IR spectra, X-ray diffraction, magnetic moments, and electronic spectra. The stoichiometry of these compounds was ML2x(H20), (where M = metal ion, L = organic ligand and x = water molecule). The environments of cobalt, nickel, and copper nicotinates and the environments of cobalt and nickel picolinates were octahedral, whereas the environment of copper picolinate [Cu(PA)2] was tetragonal. However, the environments of cobalt, nickel, and copper isonicotinates were polymeric octahedral structures. The morphological changes that occurred throughout the decomposition were followed by SEM observation. TG, DTG, and DSC measurements have studied the thermal behaviour of the prepared complexes in air. During the degradation processes of the hydrated complexes, the crystallisation water molecules were lost in one or two steps. This was also followed by loss of organic ligands and the metal oxides remained. Comparison between the DTG temperatures of the first and second steps of the dehydration suggested that the water of crystallisation was more strongly bonded with anion in Ni(II) complexes than in the complexes of Co(II) and Cu(II). The intermediate products of decomposition were not identified. The most probable reaction mechanism for the prepared complexes was also Avrami-Erofeev equation (A) characteristic of solid-state nucleation-growth mechanism. The tempemture dependence of conductivity using direct current was determined for cobalt, nickel, Cl.nd copper isonicotinates. An activation energy (ΔΕ), the activation energy (ΔΕ ) were calculated.The ternperature and frequency dependence of conductivity, the frequency dependence of dielectric constant, and the dielectric loss for nickel isonicotinate were determined by using altemating current. The value of s paralneter and the value of'density of state [N(Ef)] were calculated. Keyword Thermal decomposition, kinetic, electrical conduclion, pyridine rnono~ carboxylic acid, cOlnplex, transition metal compJex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidation of bis(p-ethoxyphenyl) ditelluride by hydrogen peroxide has been studied kinetically. The reaction monitored was an oxidation from tellurium(I) to tellurium(II). The reaction stoichiometry ratio was found to depend upon the initial reagent concentrations. The presence of dioxygen was found to retard the rate and attributed to a dioxygen-ditelluride adduct. The rate varies in the following order of different atmospheres N2> Air> > O2. The final product obtained from the oxidation has been characterised by IR, NMR and ESR spectroscopy. A mechanism for the oxidation has been suggested. The reduction of p-EtOPhTeCl3 by the hydrazinium ion has been studied kinetically. The stoichiometric measurements show that four moles p-EtOPhTeCl3 are equivalent to three moles hydrazinium ion. The kinetics were studied under pseudo first order conditions. No ammonia was detected as a nitrogen containing product. The reduction proceeds via a two-electron process which indicates that it is inner-sphere in nature. A mechanism for the reduction is suggested. The solvolysis of p-EtOPhTeCl3 by methanol in benzene/methanol media has been studied. The study shows that the solvolysis is a reversible, acid catalysed reaction. Replacement of the chlorides on tellurium by methanol is agreed to be associative and replacement of the first chloride is rate determining. The rate of solvolysis varies in the order trichloride > tribromide > triiodide. A mechanism for the solvolysis is suggested. The synthesis of some tellurium heterocyclics is reported. The synthesis and characterisation of telluranthrene is reported. The attempted synthesis of telluraxanthene was unsuccessful.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poorly water-soluble drugs show an increase in solubility in the presence of cyclodextrins (CyD) due to the formation of a water-soluble complex between the drug and dissolved CyD. This study investigated the interactions of -Cyd and hydroxypropyl--CyD (HP--CyD, M.S. = 0.6) with antimicrobial agents of limited solubility in an attempt to increase their microbiological efficacy. The agents studied were chlorhexidine dihydrochloride (CHX), p-hydroxybenzoic acid esters (methyl, ethyl, proply and butyl) and triclosan. The interactions between the antimicrobials and CyDs were studied in solution and solid phases. Phase solubility studied revealed an enhancement in the aqueous drug solubility in the presence of the CyD and also gave an indication of the complex stability constant (Ks). The temperature-dependence of the stability constant of the complex was modelled by the van't Hoff plot which yielded the thermodynamic parameters for complexation. Further confirmation of the inclusion of the antimicrobials within the cavity of the CyDs in aqueous solution was obtained from proton magnetic resonance and ultraviolet absorption spectroscopies. The former method indicated that the chlorophenyl moiety of the CHX was included within the -CyD cavity and the stoichiometry of the complex formed was 1:1. The solid-phase complexes were prepared by freeze-drying. The inclusion complex of triclosan with HP--CyD was obtained from aqueous solution with the addition of ammonia. Evidence to confirm complex formation was obtained from DSC, IR and X-ray powder diffraction studies. Dissolution studies of the solid inclusion complexes using the dispersed powder technique illustrated their superior solubilities as compared to the equimolar physical mix of the guest and CyD. It was shown that these solutions of the complex were supersaturated with respect to the free guest. This was further demonstrated by diffusion studies which showed the flux of free drug from donor solutions of the antimicrobial-CyD complex to be significantly greater than the flux from donor suspensions of drug alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 5-HT3 receptors are members of the cys-loop family of ligand-gated ion channels. Two functional subtypes are known, the homomeric 5HT3A and the heteromeric 5HT3A/B receptors, which exhibit distinct biophysical characteristics but are difficult to differentiate pharmacologically. Atomic force microscopy has been used to determine the stoichiometry and architecture of the heteromeric 5HT3A/B receptor. Each subunit was engineered to express a unique C-terminal epitope tag, together with six sequential histidine residues to facilitate nickel affinity purification. The 5-HT3 receptors, ectopically expressed in HEK293 cells, were solubilised, purified and decorated with antibodies to the subunit specific epitope tags. Imaging of individual receptors by atomic force microscopy revealed a pentameric arrangement of subunits in the order BBABA, reading anti-clockwise when viewed from the extracellular face. Homology models for the heteromeric receptor were then constructed using both the electron microscopic structure of the nicotinic acetylcholine receptor, from Torpedo marmorata, and the X-ray crystallographic structure of the soluble acetylcholine binding protein, from Lymnaea stagnalis, as templates. These homology models were used, together with equivalent models constructed for the homomeric receptor, to interpret mutagenesis experiments designed to explore the minimal recognition differences of both the natural agonist, 5-HT, and the competitive antagonist, granisetron, for the two human receptor subtypes. The results of this work revealed that the 5-HT3B subunit residues within the ligand binding site, for both the agonist and antagonist, are accommodating to conservative mutations. They are consistent with the view that the 5-HT3A subunit provides the principal and the 5-HT38 subunit the complementary recognition interactions at the binding interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tbe formation of Pd(TeR)n and (CuTeR)n from the reaction between telluroesters and Pd(II)or Cu(II) suggested that these organa­tellurium reagents may be useful precursors of RTe- ligands in reactions with transition-metal substrates. Also the formation of telluronium salts Me2RTeI- from the reaction between telluroesters and methyl iodide, together with the above, confirm the cleavage of -cõ-Te bonds rather than -C-Te bonds. The formation of a carboxylic acid from the toluene solution of a ditelluride d palladium(O) complex in the presence of light oxygen (from air) is demonstrated. When the solvent employed is p-xylene an aldehyde is formed.The reaction proceeds via the free radical, RTeO, with Pd(PPh3)4 as a catalyst.It has also been shown that the oxidation of aldehydes to carboxylic acids is catalysed by ditelluride. Spin trapping experiments with PhCH=N(O)But (phenyl-t-butyl-nitrone) have provided evidence that the oxidative addition of an alkyl halide (RX=Mei, BunBr, BusecBr, ButBr, BrCH2-CH=CHCH2Br, and Br(CH2)4Br) to diphenyltelluride and reductive elimination of CH3SCN from Ph2(CH3)Te(NCS) proceeds via radical pathways. A mechanism is proposed for oxidative addition which involves the preformation of a charge transfer complex of alkyl halide and diphenyltelluride.The first step is the formation of a charge transfer complex, and the initial product of the oxidative addition is a "covalent" form of the tellurium(IV)compound. When the radical R is more stable, Ph2TeX2 may be the major tellurium(IV)product. The reaction of RTeNa (R=p-EtOC6H4, Ph) with organic dihalides X2(CH2)n (n=1,2,3,4) affords telluronium salts (n=3,4; X=Cl, Br) the nature of which is discussed.For n=l (X=Br, I)the products are formulated as charge transfer complexes of stoichiometry (RTe)2(CH2).CH2X2• For n=2, elimination of ditelluride occurs with the formation of an alkene. Some 125’Te Mõssbauer data are discussed and it is suggested that the unusually low value of 6 (7.58 mm.s-1 ) for  p-EtO.C6H4.Te)2(cH2)cH2Br2 relates to removal of 5's electronsfrom the spare pair orbltal via the charge transfer interaction. 125Te Mossbauer data for (p-EtO.C6H4)Te(CH2)4Br are typical of a tellurium (IV) compound and in particular ∇ is in the expected range for a telluronium salt. The product of the reaction of Na Te (C6H4.OEt), with 1,3-dibromopropane is, from the Mössbauer data, also a telluronium salt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigations described in this thesis concern the molecular interactions between polar solute molecules and various aromatic compounds in solution. Three different physical methods were employed. Nuclear magnetic resonance (n.m.r.) spectroscopy was used to determine the nature and strength of the interactions and the geometry of the transient complexes formed. Cryoscopic studies were used to provide information on the stoichiometry of the complexes. Dielectric constant studies were conducted in an attempt to confirm and supplement the spectroscopic investigations. The systems studied were those between nitromethane, chloroform, acetonitrile (solutes) and various methyl substituted benzenes. In the n.m.r. work the dependence of the solute chemical shift upon the compositions of the solutions was determined. From this the equilibrium quotients (K) for the formation of each complex and the shift induced in the solute proton by the aromatic in the complex were evaluated. The thermodynamic parameters for the interactions were obtained from the determination of K at several temperatures. The stoichiometries of the complexes obtained from cryoscopic studies were found to agree with those deduced from spectroscopic investigations. For most systems it is suggested that only one type of complex, of 1:1 stiochiometry, predominates except that for the acetonitrile-benzene system a 1:2 complex is formed. Two sets of dielectric studies were conducted, the first to show that the nature of the interaction is dipole-induced dipole and the second to calculate K. The equilibrium quotients obtained from spectroscopic and dielectric studies are compared. Time-averaged geometries of the complexes are proposed. The orientation of solute, with respect to the aromatic for the 1:1 complexes, appears to be the one in which the solute lies symmetrically about the aromatic six-fold axis whereas for the 1:2 complex, a sandwich structure is proposed. It is suggested that the complexes are formed through a dipole-induced dipole interaction and steric factors play some part in the complex formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many Prussian Blue Analogues are known to show a thermally induced phase transition close to room temperature and a reversible, photo-induced phase transition at low temperatures. This work reports on magnetic measurements, X-ray photoemission and Raman spectroscopy on a particular class of these molecular heterobimetallic systems, specifically on Rb0.81Mn[Fe(CN)6]0.95_1.24H2O, Rb0.97Mn[Fe(CN)6]0.98_1.03H2O and Rb0.70Cu0.22Mn0.78[Fe(CN)6]0.86_2.05H2O, to investigate these transition phenomena both in the bulk of the material and at the sample surface. Results indicate a high degree of charge transfer in the bulk, while a substantially reduced conversion is found at the sample surface, even in case of a near perfect (Rb:Mn:Fe=1:1:1) stoichiometry. Thus, the intrinsic incompleteness of the charge transfer transition in these materials is found to be primarily due to surface reconstruction. Substitution of a large fraction of charge transfer active Mn ions by charge transfer inactive Cu ions leads to a proportional conversion reduction with respect to the maximum conversion that is still stoichiometrically possible and shows the charge transfer capability of metal centers to be quite robust upon inclusion of a neighboring impurity. Additionally, a 532 nm photo-induced metastable state, reminiscent of the high temperature Fe(III)Mn(II) ground state, is found at temperatures 50-100 K. The efficiency of photo-excitation to the metastable state is found to be maximized around 90 K. The photo-induced state is observed to relax to the low temperature Fe(II)Mn(III) ground state at a temperature of approximately 123 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reversible phosphorylation plays a key role in numerous biological processes. Mass spectrometry-based approaches are commonly used to analyze protein phosphorylation, but such analysis is challenging, largely due to the low phosphorylation stoichiometry. Hence, a number of phosphopeptide enrichment strategies have been developed, including metal oxide affinity chromatography (MOAC). Here, we describe a new material for performing MOAC that employs a magnetite-doped polydimethylsiloxane (PDMS), that is suitable for the creation of microwell array and microfluidic systems to enable low volume, high throughput analysis. Incubation time and sample loading were explored and optimized and demonstrate that the embedded magnetite is able to enrich phosphopeptides. This substrate-based approach is rapid, straightforward and suitable for simultaneously performing multiple, low volume enrichments. © the Partner Organisations 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth of highly functionalised poly allyl alcohol films by pulsed plasma polymerisation of CH2 double bond; length as m-dashCHCH2OH on biomedical grade polyurethane has been followed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Film thickness is observed to increase approximately linearly with plasma modification time, suggesting a layer-by-layer growth mode of poly allyl alcohol. Water contact angle measurements reveal the change in the surface free energy of wetting decreases linearly with plasma modification up to the monolayer point after which a constant limiting value of −24 mJ m−2 was attained. Films prepared at 20 W plasma power with a duty cycle of 10 μs:500 μs exhibit a high degree of hydroxyl (single bondOH) retention with minimal fragmentation of the monomer observed. Increasing the plasma power up to 125 W is found to improve single bondOH retention at the expense of ether formation generating films close to the monomer stoichiometry. Duty cycle plays an important role in controlling both film composition and thickness, with longer off times increasing single bondOH retention, while longer on times enhance allyl alcohol film growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study the interaction of the preservative sodium chlorite with unsaturated lipids and glutathione was investigated, in comparison with peroxides, sodium hypochlorite, and benzalkonium chloride. The aim was to determine whether the action of sodium chlorite could involve membrane lipid damage or antioxidant depletion, and how this related to toxicity in both mammalian and microbial cells. The treatment of phospholipids with chlorite yielded low levels of hydroperoxides, but sodium chlorite oxidized the thiol-containing antioxidant glutathione to its disulfide form very readily in vitro, with a 1:4 oxidant:GSH stoichiometry. In cultured cells, sodium chlorite also caused a substantial depletion of intracellular glutathione, whereas lipid oxidation was not very prominent. Sodium chlorite had a lower toxicity to ocular mammalian cells than benzalkonium chloride, which could be responsible for the different effects of long-term application in the eye. The fungal cells, which were most resistant to sodium chlorite, maintained higher percentage levels of intracellular glutathione during treatment than the mammalian cells. The results show that sodium chlorite can cause oxidative stress in cells, and suggest that cell damage is more likely to be due to interaction with thiol compounds than with cell membrane lipids. The study also provides important information about the differential resistance of ocular cells and microbes to various preservatives and oxidants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of substitution and oxidation-reduction on the thermal conductivity of perovskite-like layered structure (PLS) ceramics was investigated in relation to mass contrast and non-stoichiometry. Sr (acceptor) was substituted on the A site, while Ta (donor) was substituted on the B site of La2Ti2O7. Substitution in PLS materials creates atomic scale disorders to accommodate the non-stoichiometry. High resolution transmission electron microscopy and X ray diffraction revealed that acceptor substitution in La2Ti2O7 produced nanoscale intergrowths of n = 5 layered phase, while donor substitution produced nanoscale intergrowths of n = 3 layered phase. As a result of these nanoscale intergrowths, the thermal conductivity value reduced by as much as ∼20%. Pure La2Ti2O7 has a thermal conductivity value of ∼1.3 W/m K which dropped to a value of ∼1.12 W/m K for Sr doped La2Ti2O7 and ∼0.93 W/m K for Ta doped La2Ti2O7 at 573 K.