19 resultados para stator-rotor
em Aston University Research Archive
Resumo:
The primary objective of this paper is to elimination of the problem of sensitivity to parameter variation of induction motor drive. The proposed sensorless strategy is based on an algorithm permitting a better simultaneous estimation of the rotor speed and the stator resistance including an adaptive mechanism based on the lyaponov theory. To study the reliability and the robustness of the sensorless technique to abnormal operations, some simulation tests have been performed under several cases. The proposed sensorless vector control scheme showed a good performance behavior in the transient and steady states, with an excellent disturbance rejection of the load torque. © 2013 Praise Worthy Prize S.r.l. - All rights reserved.
Resumo:
Electrically excited synchronous machines with brushes and slip rings are popular but hardly used in inflammable and explosive environments. This paper proposes a new brushless electrically excited synchronous motor with a hybrid rotor. It eliminates the use of brushes and slip rings so as to improve the reliability and cost-effectiveness of the traction drive. The proposed motor is characterized with two sets of stator windings with two different pole numbers to provide excitation and drive torque independently. This paper introduces the structure and operating principle of the machine, followed by the analysis of the air-gap magnetic field using the finite-element method. The influence of the excitation winding's pole number on the coupling capability is studied and the operating characteristics of the machine are simulated. These are further examined by the experimental tests on a 16 kW prototype motor. The machine is proved to have good static and dynamic performance, which meets the stringent requirements for traction applications.
Resumo:
Magnetic levitation bearings eliminate friction, wear and the need for lubrication and so have high speed capability and potential for vibration control. One noteworthy development in the realm of magnetic levitation is the self-bearing or bearingless motor - an electromagnetic machine that supports its own rotor by way of magnetic forces generated by windings on its stator. Accordingly, various winding schemes have been proposed to accomplish the task of force production. This thesis proposes a novel concept of winding based on a bridge connection for polyphase self-bearing rotating electrical machines with the following advantages: • the connection uses a single set of windings and thus power loss is relatively low when compared with self-bearing motors with conventional dual set of windings. • the motor and levitation controls are segregated such that only one motor inverter is required for the normal torque production and levitation forces are produced by using auxiliary power supplies of relatively low current and voltage rating. The usual way of controlling the motor is retained. • there are many variant winding schemes to meet special needs. • independent power supplies for levitation control offer redundancy for fault tolerance. This thesis dwells specifically on the conceptual design and implementation of the proposed single set of windings scheme. The new connection has been verified to exhibit characteristics of a self-bearing motor via coupled-field finite element analysis: results are crosschecked analytically. Power loss and other aspects such as cost, design implementation are compared to support the newly proposed connection as a potential alternative to present designs.
Resumo:
In induction machines the tooth frequency losses due to permeance variation constitute a signif'icant, portion of the total loss. In order to predict and estimate these losses it, is essential to obtain a clear understanding of the no-load distribution of the air gap magnetic field and the magnitude of flux pulsation in both stator and rotor teeth. The existing theories and methods by which the air gap permeance variation in a doubly slotted structure is calculated are either empirical or restricted. The main objective of this thesis is to obtain a detailed analysis of the no-load air gap magnetic field distribution and the effect of air gap geometry on the magnitude and waveform of the tooth flux pulsation. In this thesis a detaiiled theoretical and experimental analysis of flux distribution not only leads to a better understanding of the distribution of no-load losses but also provides theoretical analysis for calculating the losses with greater accuracy
Resumo:
This thesis describes an experimental and analytic study of the effects of magnetic non-linearity and finite length on the loss and field distribution in solid iron due to a travelling mmf wave. In the first half of the thesis, a two-dimensional solution is developed which accounts for the effects of both magnetic non-linearity and eddy-current reaction; this solution is extended, in the second half, to a three-dimensional model. In the two-dimensional solution, new equations for loss and flux/pole are given; these equations contain the primary excitation, the machine parameters and factors describing the shape of the normal B-H curve. The solution applies to machines of any air-gap length. The conditions for maximum loss are defined, and generalised torque/frequency curves are obtained. A relationship between the peripheral component of magnetic field on the surface of the iron and the primary excitation is given. The effects of magnetic non-linearity and finite length are combined analytically by introducing an equivalent constant permeability into a linear three-dimensional analysis. The equivalent constant permeability is defined from the non-linear solution for the two-dimensional magnetic field at the axial centre of the machine to avoid iterative solutions. In the linear three-dimensional analysis, the primary excitation in the passive end-regions of the machine is set equal to zero and the secondary end faces are developed onto the air-gap surface. The analyses, and the assumptions on which they are based, were verified on an experimental machine which consists of a three-phase rotor and alternative solid iron stators, one with copper end rings, and one without copper end rings j the main dimensions of the two stators are identical. Measurements of torque, flux /pole, surface current density and radial power flow were obtained for both stators over a range of frequencies and excitations. Comparison of the measurements on the two stators enabled the individual effects of finite length and saturation to be identified, and the definition of constant equivalent permeability to be verified. The penetration of the peripheral flux into the stator with copper end rings was measured and compared with theoretical penetration curves. Agreement between measured and theoretical results was generally good.
Resumo:
The purpose of this investigation was to design a novel magnetic drive and bearing system for a new centrifugal rotary blood pump (CRBP). The drive system consists of two components: (i) permanent magnets within the impeller of the CRBP; and (ii) the driving electromagnets. Orientation of the magnets varies from axial through to 60° included out-lean (conical configuration). Permanent magnets replace the electromagnet drive to allow easier characterization. The performance characteristics tested were the axial force of attraction between the stator and rotor at angles of rotational alignment, Ø, and the corresponding torque at those angles. The drive components were tested for various magnetic cone angles, ?. The test was repeated for three backing conditions: (i) non-backed; (ii) steel-cupped; and (iii) steel plate back-iron, performed on an Instron tensile testing machine. Experimental results were expanded upon through finite element and boundary element analysis (BEM). The force/torque characteristics were maximal for a 12-magnet configuration at 0° cone angle with steel-back iron (axial force = 60 N, torque = 0.375 Nm). BEM showed how introducing a cone angle increases the radial restoring force threefold while not compromising axial bearing force. Magnets in the drive system may be orientated not only to provide adequate coupling to drive the CRBP, but to provide significant axial and radial bearing forces capable of withstanding over 100 m/s2 shock excitation on the impeller. Although the 12 magnet 0° (?) configuration yielded the greatest force/torque characteristic, this was seen as potentially unattractive as this magnetic cone angle yielded poor radial restoring force characteristics.
Resumo:
A Jeffcott rotor consists of a disc at the centre of an axle supported at its end by bearings. A bolted Jeffcott rotor is formed by two discs, each with a shaft on one side. The discs are held together by spring loaded bolts near the outer edge. When the rotor turns there is tendency for the discs to separate on one side. This effect is more marked if the rotor is unbalanced, especially at resonance speeds. The equations of motion of the system have been developed with four degrees of freedom to include the rotor and bearing movements in the respective axes. These equations which include non-linear terms caused by the rotor opening, are subjected to external force such from rotor imbalance. A simulation model based on these equations was created using SIMULINK. An experimental test rig was used to characterise the dynamic features. Rotor discs open at a lateral displacement of the rotor of 0.8 mm. This is the threshold value used to show the change of stiffness from high stiffness to low stiffness. The experimental results, which measure the vibration amplitude of the rotor, show the dynamic behaviour of the bolted rotor due to imbalance. Close agreement of the experimental and theoretical results from time histories, waterfall plots, pseudo-phase plots and rotor orbit plot, indicated the validity of the model and existence of the non-linear jump phenomenon.
Resumo:
The advent of the harmonic neutralised shunt Converter Compensator as a practical means of reactive power compensation in power transmission systems has cleared ground for wider application of this type of equipment. An experimental 24-pulse voltage sourced convector has been successfully applied in controlling the terminal power factor of a 1.5kW, 240V three phase cage rotor induction motor, whose winding has been used in place of the usual phase shifting transformers. To achieve this, modifications have been made to the conventional stator winding of the induction machine. These include an unconventional phase spread and facilitation of compensator connections to selected tapping points between stator coils to give a three phase winding with a twelve phase connection to the twenty four pulse converter. Theoretical and experimental assessments of the impact of these modifications and attachment of the compensator have shown that there is a slight reduction in the torque developed at a given slip and in the combined system efficiency. There is also an increase in the noise level, also a consequence of the harmonics. The stator leakage inductance gave inadequate coupling reactance between the converter and the effective voltage source, necessitating the use of external inductors in each of the twelve phases. The terminal power factor is fully controllable when the induction machine is used either as a motor or as a generator.
Resumo:
Electromagnetic design of a 1.12-MW, 18 000-r/min high-speed permanent-magnet motor (HSPMM) is carried out based on the analysis of pole number, stator slot number, rotor outer diameter, air-gap length, permanent magnet material, thickness, and pole arc. The no-load and full-load performance of the HSPMM is investigated in this paper by using 2-D finite element method (FEM). In addition, the power losses in the HSPMM including core loss, winding loss, rotor eddy current loss, and air friction loss are predicted. Based on the analysis, a prototype motor is manufactured and experimentally tested to verify the machine design.
Resumo:
A two degrees of freedom (2-DOF) actuator capable of producing linear translation, rotary motion, or helical motion would be a desirable asset to the fields of machine tools, robotics, and various apparatuses. In this paper, a novel 2-DOF split-stator induction motor was proposed and electromagnetic structure pa- rameters of the motor were designed and optimized. The feature of the direct-drive 2-DOF induction motor lies in its solid mover ar- rangement. In order to study the complex distribution of the eddy current field on the ferromagnetic cylinder mover and the motor’s operating characteristics, the mathematical model of the proposed motor was established, and characteristics of the motor were ana- lyzed by adopting the permeation depth method (PDM) and finite element method (FEM). The analytical and numerical results from motor simulation clearly show a correlation between the PDM and FEM models. This may be considered as a fair justification for the proposed machine and design tools.
Resumo:
This paper presents a surrogate-model-based optimization of a doubly-fed induction generator (DFIG) machine winding design for maximizing power yield. Based on site-specific wind profile data and the machine's previous operational performance, the DFIG's stator and rotor windings are optimized to match the maximum efficiency with operating conditions for rewinding purposes. The particle swarm optimization-based surrogate optimization techniques are used in conjunction with the finite element method to optimize the machine design utilizing the limited available information for the site-specific wind profile and generator operating conditions. A response surface method in the surrogate model is developed to formulate the design objectives and constraints. Besides, the machine tests and efficiency calculations follow IEEE standard 112-B. Numerical and experimental results validate the effectiveness of the proposed technologies.
Resumo:
This paper proposes a novel rotor structure for high-speed interior permanent magnet motors to overcome huge centrifugal forces under high-speed operation. Instead of the conventional axial stacking of silicon-steel laminations, the retaining shield rotor is inter-stacked by high-strength stainless-steel plates to enhance the rotor strength against the huge centrifugal force. Both mechanical characteristics and electromagnetic behaviors of the retaining shield rotor are analyzed using finite-element method in this paper. Prototypes and experimental results are demonstrated to evaluate the performance. The analysis and test results show that the proposed retaining shield rotor could effectively enhance the rotor strength without a significant impact on the electromagnetic performance, while some design constraints should be compromised.
Resumo:
Switched reluctance motors (SRMs) are gaining in popularity because of their robustness, low cost, and excellent high-speed characteristics. However, they are known to cause vibration and noise primarily due to the radial pulsating force resulting from their double-saliency structure. This paper investigates the effect of skewing the stator and/or rotor on the vibration reduction of the three-phase SRMs by developing four 12/8-pole SRMs, including a conventional SRM, a skewed rotor-SRM (SR-SRM), a skewed stator-SRM (SS-SRM), and a skewed stator and rotor-SRM (SSR-SRM). The radial force distributed on the stator yoke under different skewing angles is extensively studied by the finite-element method and experimental tests on the four prototypes. The inductance and torque characteristics of the four motors are also compared, and a control strategy by modulating the turn-ON and turn-OFF angles for the SR-SRM and the SS-SRM are also presented. Furthermore, experimental results validate the numerical models and the effectiveness of the skewing in reducing the motor vibration. Test results also suggest that skewing the stator is more effective than skewing the rotor in the SRMs.