6 resultados para repeated-event memory

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives Ecstasy is a recreational drug whose active ingredient, 3,4-methylenedioxymethamphetamine (MDMA), acts predominantly on the serotonergic system. Although MDMA is known to be neurotoxic in animals, the long-term effects of recreational Ecstasy use in humans remain controversial but one commonly reported consequence is mild cognitive impairment particularly affecting verbal episodic memory. Although event-related potentials (ERPs) have made significant contributions to our understanding of human memory processes, until now they have not been applied to study the long-term effects of Ecstasy. The aim of this study was to examine the effects of past Ecstasy use on recognition memory for both verbal and non-verbal stimuli using ERPs. Methods We compared the ERPs of 15 Ecstasy/polydrug users with those of 14 cannabis users and 13 non-illicit drug users as controls. Results Despite equivalent memory performance, Ecstasy/polydrug users showed an attenuated late positivity over left parietal scalp sites, a component associated with the specific memory process of recollection. Conlusions This effect was only found in the word recognition task which is consistent with evidence that left hemisphere cognitive functions are disproportionately affected by Ecstasy, probably because the serotonergic system is laterally asymmetrical. Experimentally, decreasing central serotonergic activity through acute tryptophan depletion also selectively impairs recollection, and this too suggests the importance of the serotonergic system. Overall, our results suggest that Ecstasy users, who also use a wide range of other drugs, show a durable abnormality in a specific ERP component thought to be associated with recollection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although event-related potentials (ERPs) are widely used to study sensory, perceptual and cognitive processes, it remains unknown whether they are phase-locked signals superimposed upon the ongoing electroencephalogram (EEG) or result from phase-alignment of the EEG. Previous attempts to discriminate between these hypotheses have been unsuccessful but here a new test is presented based on the prediction that ERPs generated by phase-alignment will be associated with event-related changes in frequency whereas evoked-ERPs will not. Using empirical mode decomposition (EMD), which allows measurement of narrow-band changes in the EEG without predefining frequency bands, evidence was found for transient frequency slowing in recognition memory ERPs but not in simulated data derived from the evoked model. Furthermore, the timing of phase-alignment was frequency dependent with the earliest alignment occurring at high frequencies. Based on these findings, the Firefly model was developed, which proposes that both evoked and induced power changes derive from frequency-dependent phase-alignment of the ongoing EEG. Simulated data derived from the Firefly model provided a close match with empirical data and the model was able to account for i) the shape and timing of ERPs at different scalp sites, ii) the event-related desynchronization in alpha and synchronization in theta, and iii) changes in the power density spectrum from the pre-stimulus baseline to the post-stimulus period. The Firefly Model, therefore, provides not only a unifying account of event-related changes in the EEG but also a possible mechanism for cross-frequency information processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A paradox of memory research is that repeated checking results in a decrease in memory certainty, memory vividness and confidence [van den Hout, M. A., & Kindt, M. (2003a). Phenomenological validity of an OCD-memory model and the remember/know distinction. Behaviour Research and Therapy, 41, 369–378; van den Hout, M. A., & Kindt, M. (2003b). Repeated checking causes memory distrust. Behaviour Research and Therapy, 41, 301–316]. Although these findings have been mainly attributed to changes in episodic long-term memory, it has been suggested [Shimamura, A. P. (2000). Toward a cognitive neuroscience of metacognition. Consciousness and Cognition, 9, 313–323] that representations in working memory could already suffer from detrimental checking. In two experiments we set out to test this hypothesis by employing a delayed-match-to-sample working memory task. Letters had to be remembered in their correct locations, a task that was designed to engage the episodic short-term buffer of working memory [Baddeley, A. D. (2000). The episodic buffer: a new component in working memory? Trends in Cognitive Sciences, 4, 417–423]. Of most importance, we introduced an intermediate distractor question that was prone to induce frustrating and unnecessary checking on trials where no correct answer was possible. Reaction times and confidence ratings on the actual memory test of these trials confirmed the success of this manipulation. Most importantly, high checkers [cf. VOCI; Thordarson, D. S., Radomsky, A. S., Rachman, S., Shafran, R, Sawchuk, C. N., & Hakstian, A. R. (2004). The Vancouver obsessional compulsive inventory (VOCI). Behaviour Research and Therapy, 42(11), 1289–1314] were less accurate than low checkers when frustrating checking was induced, especially if the experimental context actually emphasized the irrelevance of the misleading question. The clinical relevance of this result was substantiated by means of an extreme groups comparison across the two studies. The findings are discussed in the context of detrimental checking and lack of distractor inhibition as a way of weakening fragile bindings within the episodic short-term buffer of Baddeley's (2000) model. Clinical implications, limitations and future research are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compulsive checking is known to influence memory, yet there is little consideration of checking as a cognitive style within the typical population. We employed a working memory task where letters had to be remembered in their locations. The key experimental manipulation was to induce repeated checking after encoding by asking about a stimulus that had not been presented. We recorded the effect that such misleading probes had on a subsequent memory test. Participants drawn from the typical population but who scored highly on a checking-scale had poorer memory and less confidence than low scoring individuals. While thoroughness is regarded as a quality, our results indicate that a cognitive style that favours repeated checking does not always lead to the best performance as it can undermine the authenticity of memory traces. This may affect various aspects of everyday life including the work environment and we discuss its implications and possible counter-measures. Copyright © 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single cell recordings in monkeys support the notion that the lateral prefrontal cortex (PFC) controls reactivation of visual working memory representations when rehearsal is disrupted. In contrast, recent fMRI findings yielded a double dissociation for PFC and the medial temporal lobe (MTL) in a letter working memory task. PFC was engaged in interference protection during reactivation while MTL was prominently involved in the retrieval of the letter representations. We present event-related potential data (ERP) that support PFC involvement in the top-down control of reactivation during a visual working memory task with endogenously triggered recovery after visual interference. A differentiating view is proposed for the role of PFC in working memory with respect to endogenous/exogenous control and to stimulus type. General implications for binding and retention mechanisms are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is a study of performance management of Complex Event Processing (CEP) systems. Since CEP systems have distinct characteristics from other well-studied computer systems such as batch and online transaction processing systems and database-centric applications, these characteristics introduce new challenges and opportunities to the performance management for CEP systems. Methodologies used in benchmarking CEP systems in many performance studies focus on scaling the load injection, but not considering the impact of the functional capabilities of CEP systems. This thesis proposes the approach of evaluating the performance of CEP engines’ functional behaviours on events and develops a benchmark platform for CEP systems: CEPBen. The CEPBen benchmark platform is developed to explore the fundamental functional performance of event processing systems: filtering, transformation and event pattern detection. It is also designed to provide a flexible environment for exploring new metrics and influential factors for CEP systems and evaluating the performance of CEP systems. Studies on factors and new metrics are carried out using the CEPBen benchmark platform on Esper. Different measurement points of response time in performance management of CEP systems are discussed and response time of targeted event is proposed to be used as a metric for quality of service evaluation combining with the traditional response time in CEP systems. Maximum query load as a capacity indicator regarding to the complexity of queries and number of live objects in memory as a performance indicator regarding to the memory management are proposed in performance management of CEP systems. Query depth is studied as a performance factor that influences CEP system performance.