5 resultados para repeated-event memory

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells in the lateral intraparietal cortex (LIP) of rhesus macaques respond vigorously and in spatially-tuned fashion to briefly memorized visual stimuli. Responses to stimulus presentation, memory maintenance, and task completion are seen, in varying combination from neuron to neuron. To help elucidate this functional segmentation a new system for simultaneous recording from multiple neighboring neurons was developed. The two parts of this dissertation discuss the technical achievements and scientific discoveries, respectively.

Technology. Simultanous recordings from multiple neighboring neurons were made with four-wire bundle electrodes, or tetrodes, which were adapted to the awake behaving primate preparation. Signals from these electrodes were partitionable into a background process with a 1/f-like spectrum and foreground spiking activity spanning 300-6000 Hz. Continuous voltage recordings were sorted into spike trains using a state-of-the-art clustering algorithm, producing a mean of 3 cells per site. The algorithm classified 96% of spikes correctly when tetrode recordings were confirmed with simultaneous intracellular signals. Recording locations were verified with a new technique that creates electrolytic lesions visible in magnetic resonance imaging, eliminating the need for histological processing. In anticipation of future multi-tetrode work, the chronic chamber microdrive, a device for long-term tetrode delivery, was developed.

Science. Simultaneously recorded neighboring LIP neurons were found to have similar preferred targets in the memory saccade paradigm, but dissimilar peristimulus time histograms, PSTH). A majority of neighboring cell pairs had a difference in preferred directions of under 45° while the trial time of maximal response showed a broader distribution, suggesting homogeneity of tuning with het erogeneity of function. A continuum of response characteristics was present, rather than a set of specific response types; however, a mapping experiment suggests this may be because a given cell's PSTH changes shape as well as amplitude through the response field. Spike train autocovariance was tuned over target and changed through trial epoch, suggesting different mechanisms during memory versus background periods. Mean frequency-domain spike-to-spike coherence was concentrated below 50 Hz with a significant maximum of 0.08; mean time-domain coherence had a narrow peak in the range ±10 ms with a significant maximum of 0.03. Time-domain coherence was found to be untuned for short lags (10 ms), but significantly tuned at larger lags (50 ms).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that the glycoproteins containing the fucose moiety are involved in neuronal communication phenomena such as long-term potentiation and memory formation. These results imply that fucose containing glycoproteins might play an important role in learning and memory. To understand the role of fucose in neuronal communication, and the mechanisms by which fucose may be involved in information storage, the identification of fucosylproteins is essential. This report describes the identification and characterization of fucosylproteins in the brain, which will provide new insights into the role of the fucose involved molecular interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents theories, analyses, and algorithms for detecting and estimating parameters of geospatial events with today's large, noisy sensor networks. A geospatial event is initiated by a significant change in the state of points in a region in a 3-D space over an interval of time. After the event is initiated it may change the state of points over larger regions and longer periods of time. Networked sensing is a typical approach for geospatial event detection. In contrast to traditional sensor networks comprised of a small number of high quality (and expensive) sensors, trends in personal computing devices and consumer electronics have made it possible to build large, dense networks at a low cost. The changes in sensor capability, network composition, and system constraints call for new models and algorithms suited to the opportunities and challenges of the new generation of sensor networks. This thesis offers a single unifying model and a Bayesian framework for analyzing different types of geospatial events in such noisy sensor networks. It presents algorithms and theories for estimating the speed and accuracy of detecting geospatial events as a function of parameters from both the underlying geospatial system and the sensor network. Furthermore, the thesis addresses network scalability issues by presenting rigorous scalable algorithms for data aggregation for detection. These studies provide insights to the design of networked sensing systems for detecting geospatial events. In addition to providing an overarching framework, this thesis presents theories and experimental results for two very different geospatial problems: detecting earthquakes and hazardous radiation. The general framework is applied to these specific problems, and predictions based on the theories are validated against measurements of systems in the laboratory and in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational general relativity is a field of study which has reached maturity only within the last decade. This thesis details several studies that elucidate phenomena related to the coalescence of compact object binaries. Chapters 2 and 3 recounts work towards developing new analytical tools for visualizing and reasoning about dynamics in strongly curved spacetimes. In both studies, the results employ analogies with the classical theory of electricity and magnitism, first (Ch. 2) in the post-Newtonian approximation to general relativity and then (Ch. 3) in full general relativity though in the absence of matter sources. In Chapter 4, we examine the topological structure of absolute event horizons during binary black hole merger simulations conducted with the SpEC code. Chapter 6 reports on the progress of the SpEC code in simulating the coalescence of neutron star-neutron star binaries, while Chapter 7 tests the effects of various numerical gauge conditions on the robustness of black hole formation from stellar collapse in SpEC. In Chapter 5, we examine the nature of pseudospectral expansions of non-smooth functions motivated by the need to simulate the stellar surface in Chapters 6 and 7. In Chapter 8, we study how thermal effects in the nuclear equation of state effect the equilibria and stability of hypermassive neutron stars. Chapter 9 presents supplements to the work in Chapter 8, including an examination of the stability question raised in Chapter 8 in greater mathematical detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flash memory is a leading storage media with excellent features such as random access and high storage density. However, it also faces significant reliability and endurance challenges. In flash memory, the charge level in the cells can be easily increased, but removing charge requires an expensive erasure operation. In this thesis we study rewriting schemes that enable the data stored in a set of cells to be rewritten by only increasing the charge level in the cells. We consider two types of modulation scheme; a convectional modulation based on the absolute levels of the cells, and a recently-proposed scheme based on the relative cell levels, called rank modulation. The contributions of this thesis to the study of rewriting schemes for rank modulation include the following: we

•propose a new method of rewriting in rank modulation, beyond the previously proposed method of “push-to-the-top”;

•study the limits of rewriting with the newly proposed method, and derive a tight upper bound of 1 bit per cell;

•extend the rank-modulation scheme to support rankings with repetitions, in order to improve the storage density;

•derive a tight upper bound of 2 bits per cell for rewriting in rank modulation with repetitions;

•construct an efficient rewriting scheme that asymptotically approaches the upper bound of 2 bit per cell.

The next part of this thesis studies rewriting schemes for a conventional absolute-levels modulation. The considered model is called “write-once memory” (WOM). We focus on WOM schemes that achieve the capacity of the model. In recent years several capacity-achieving WOM schemes were proposed, based on polar codes and randomness extractors. The contributions of this thesis to the study of WOM scheme include the following: we

•propose a new capacity-achievingWOM scheme based on sparse-graph codes, and show its attractive properties for practical implementation;

•improve the design of polarWOMschemes to remove the reliance on shared randomness and include an error-correction capability.

The last part of the thesis studies the local rank-modulation (LRM) scheme, in which a sliding window going over a sequence of real-valued variables induces a sequence of permutations. The LRM scheme is used to simulate a single conventional multi-level flash cell. The simulated cell is realized by a Gray code traversing all the relative-value states where, physically, the transition between two adjacent states in the Gray code is achieved by using a single “push-to-the-top” operation. The main results of the last part of the thesis are two constructions of Gray codes with asymptotically-optimal rate.