52 resultados para query formulation
em Aston University Research Archive
Resumo:
Orally disintegrating Tablets (ODTs), also known as fast-disintegrating, fast-melt or fast-dissolving tablets, are a relatively novel dosage technology that involves the rapid disintegration or dissolution of the dosage form into a solution or suspension in the mouth without the need for water. The solution containing the active ingredients is swallowed, and the active ingredients are then absorbed through the gastrointestinal epithelium to reach the target and produce the desired effect. Formulation of ODTs was originally developed to address swallowing difficulties of conventional solid oral dosage forms (tablets and capsules) experienced by wide range of patient population, especially children and elderly. The current work investigates the formulation and development of ODTs prepared by freeze drying. Initial studies focused on formulation parameters that influence the manufacturing process and performance of lyophilised tablets based on excipients used in commercial products (gelatin and saccharides). The second phase of the work was followed up by comprehensive studies to address the essential need to create saccharide free ODTs using naturally accruing amino acids individually or in combinations. Furthermore, a factorial design study was carried out to investigate the feasibility of delivering multiparticulate systems of challenging drugs using a novel formulation that exploited the electrostatic associative interaction between gelatin and carrageenan. Finally, studies aimed to replace gelatin with ethically and morally accepted components to the end users were performed and the selected binder was used in factorial design studies to investigate and optimise ODT formulations that incorporated drugs with varies physicochemical properties. Our results show that formulation of elegant lyophilised ODTs with instant disintegration and adequate mechanical strength requires carful optimisation of gelatin concentration and bloom strength in addition to saccharide type and concentration. Successful formulation of saccharides free lyophilised ODTs requires amino acids that crystallise in the frozen state or display relatively high Tg', interact and integrate completely with the binder and, also, display short wetting time with the disintegrating medium. The use of an optimised mixture of gelatin, carrageenan and alanine was able to create viscous solutions to suspend multiparticulate systems and at the same time provide tablets with short disintegration times and adequate mechanical properties. On the other hand, gum arabic showed an outstanding potential for use as a binder in the formulation of lyophilised ODTs. Compared to gelatin formulations, the use of gum arabic simplified the formulation stages, shortened the freeze drying cycles and produced tablets with superior performance in terms of the disintegration time and mechanical strength. Furthermore, formulation of lyophilised ODTs based on gum arabic showed capability to deliver diverse range of drugs with advantages over commercial products.
Resumo:
A new approach to optimisation is introduced based on a precise probabilistic statement of what is ideally required of an optimisation method. It is convenient to express the formalism in terms of the control of a stationary environment. This leads to an objective function for the controller which unifies the objectives of exploration and exploitation, thereby providing a quantitative principle for managing this trade-off. This is demonstrated using a variant of the multi-armed bandit problem. This approach opens new possibilities for optimisation algorithms, particularly by using neural network or other adaptive methods for the adaptive controller. It also opens possibilities for deepening understanding of existing methods. The realisation of these possibilities requires research into practical approximations of the exact formalism.
Resumo:
This article presents some evidence on an aspect of the design of a strategic control system, at the microlevel, within a single organization. The research we report used an ethnographic approach to provide an understanding of strategy formulation. Our aim is to contribute to an area of literature which is of increasing significance, but relatively underdeveloped in terms of the application of in-depth, field-research techniques. We take an intensive look at the manner in which performance measures are formulated, at the microlevel, within a single organization. The article presents, as an in-depth case analysis, the experience of a fisheries holding company in New Zealand. The article recounts the experiences of managers within the organization of the process of identification of such things as critical success factors and key performance indicators (KPIs) and, more broadly, the formulation of a strategic performance measurement system.
Resumo:
Dry powders suitable for inhalation containing β-estradiol, leucine as a dispersibility enhancer and lactose as a bulking agent were prepared by spray-drying from aqueous ethanol formulations. The influence of formulation components on the characteristics of the resultant spray-dried powders was examined through the use of a range of ethanol concentrations (10-50% v/v) in the solvent used to prepare the initial formulations. Additionally, the amount of leucine required to act as a dispersibility enhancer was investigated by varying the amount of leucine added to the formulation prior to spray-drying. Following spray-drying, resultant powders were characterised using scanning electron microscopy, laser diffraction and tapped density measurements, and the aerosolisation performance determined using Twin Stage Impinger and Andersen Cascade Impactor analysis. We demonstrate that selection of appropriate solvent systems and leucine concentration allows the preparation of spray-dried powders that display enhanced aerosolisation properties, and would be predicted to exhibit high deposition in the lower regions of the respiratory tract. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The aim of these studies was to compare the effect of liposome composition on physico-chemical characteristics and transfection efficacy of cationic liposomes both in vitro and in vivo. Comparison between 4 popularly used cationic lipids, showed 3b-N-(dimethylaminoethyl)carbamate (DC-Chol) to promote the highest transfect levels in cells in vitro with levels being at least 6 times higher than those of 1,2-di-O-octadecenyl-3-trimethylammonium propane (DOTMA). 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and dimethyldioctadecylammonium (DDA) and approximately twice as efficient as dipalmitoyl-trimethylammonium-propane (DPTAP). To establish the role of the helper lipid, DC-Chol liposomes were formulated in combination with either 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) or cholesterol (Chol) (1:1 molar ratio) with and without the addition of phosphatidyl choline. The choice of helper lipid incorporated within the bilayer was found to influence the formation of complexes, their resultant structure and their transfection efficiency in vitro, with SUV-DNA complexes containing optimum levels of DOPE giving higher transfection than those containing cholesterol. The inclusion of PC within the formulation also reduced transfection efficiency in vitro. However, when administered in vivo, SUV-DNA complexes composed of PC:Chol:DC-Chol at a molar ratio of 16:8:4 micromole/ml were the most effective at inducing splenocyte proliferation upon exposure to antigen in comparison to control spleens. These results demonstrate that there is no in vitro/in vivo correlation between the transfection efficacy of these liposome formulations and in vitro transfection in the above cell model cannot be taken as a reliable indicator for in vivo efficacy of DNA vaccines.
Resumo:
Despite recent advances in the formulation of lyophilised rapid disintegrating tablets (RDTs), the inclusion of matrix supporting/disintegration enhancing agents has been limited to the use of saccharides and polyols. In this study, the feasibility of using amino acids as matrix forming agents in lyophilised RDTs was investigated. Twelve amino acids were chosen (alanine, arginine, threonine, glycine, cysteine, serine, histidine, lysine, valine, asparagine, glutamine and proline), and the suitability for freeze drying, mechanical properties and disintegration time after inclusion of the amino acids at varied concentration were studied. In addition, the porosity of the RDTs and wettability profile of the amino acids were investigated to understand the mechanisms of disintegration. The results suggest the suitability of these amino acids for the lyophilisation regime, as they displayed satisfactory safety margin between the glass transition and shelf temperature (-40 degrees C), except proline-based formulations. Moreover, the crystallisation behavior of alanine, glycine, cysteine and serine at high concentration increased the stability of the formulation. The characterisation of the RDTs suggests that high concentration of the amino acids is required to enhance the mechanical properties, whereas only optimum concentrations promote the disintegration. Moreover, wetting time of the amino acid and porosity of the tablet are the two factors that control the disintegration of RDTs.
Resumo:
Liposome systems are well reported for their activity as vaccine adjuvants; however novel lipid-based microbubbles have also been reported to enhance the targeting of antigens into dendritic cells (DCs) in cancer immunotherapy (Suzuki et al 2009). This research initially focused on the formulation of gas-filled lipid coated microbubbles and their potential activation of macrophages using in vitro models. Further studies in the thesis concentrated on aqueous-filled liposomes as vaccine delivery systems. Initial work involved formulating and characterising four different methods of producing lipid-coated microbubbles (sometimes referred to as gas-filled liposomes), by homogenisation, sonication, a gas-releasing chemical reaction and agitation/pressurisation in terms of stability and physico-chemical characteristics. Two of the preparations were tested as pressure probes in MRI studies. The first preparation composed of a standard phospholipid (DSPC) filled with air or nitrogen (N2), whilst in the second method the microbubbles were composed of a fluorinated phospholipid (F-GPC) filled with a fluorocarbon saturated gas. The studies showed that whilst maintaining high sensitivity, a novel contrast agent which allows stable MRI measurements of fluid pressure over time, could be produced using lipid-coated microbubbles. The F-GPC microbubbles were found to withstand pressures up to 2.6 bar with minimal damage as opposed to the DSPC microbubbles, which were damaged at above 1.3 bar. However, it was also found that DSPC-filled with N2 microbubbles were also extremely robust to pressure and their performance was similar to that of F-GPC based microbubbles. Following on from the MRI studies, the DSPC-air and N2 filled lipid-based microbubbles were assessed for their potential activation of macrophages using in vitro models and compared to equivalent aqueous-filled liposomes. The microbubble formulations did not stimulate macrophage uptake, so studies thereafter focused on aqueous-filled liposomes. Further studies concentrated on formulating and characterising, both physico-chemically and immunologically, cationic liposomes based on the potent adjuvant dimethyldioctadecylammonium (DDA) and immunomodulatory trehalose dibehenate (TDB) with the addition of polyethylene glycol (PEG). One of the proposed hypotheses for the mechanism behind the immunostimulatory effect obtained with DDA:TDB is the ‘depot effect’ in which the liposomal carrier helps to retain the antigen at the injection site thereby increasing the time of vaccine exposure to the immune cells. The depot effect has been suggested to be primarily due to their cationic nature. Results reported within this thesis demonstrate that higher levels of PEG i.e. 25 % were able to significantly inhibit the formation of a liposome depot at the injection site and also severely limit the retention of antigen at the site. This therefore resulted in a faster drainage of the liposomes from the site of injection. The versatility of cationic liposomes based on DDA:TDB in combination with different immunostimulatory ligands including, polyinosinic-polycytidylic acid (poly (I:C), TLR 3 ligand), and CpG (TLR 9 ligand) either entrapped within the vesicles or adsorbed onto the liposome surface was investigated for immunogenic capacity as vaccine adjuvants. Small unilamellar (SUV) DDA:TDB vesicles (20-100 nm native size) with protein antigen adsorbed to the vesicle surface were the most potent in inducing both T cell (7-fold increase) and antibody (up to 2 log increase) antigen specific responses. The addition of TLR agonists poly(I:C) and CpG to SUV liposomes had small or no effect on their adjuvanticity. Finally, threitol ceramide (ThrCer), a new mmunostimulatory agent, was incorporated into the bilayers of liposomes composed of DDA or DSPC to investigate the uptake of ThrCer, by dendritic cells (DCs), and presentation on CD1d molecules to invariant natural killer T cells. These systems were prepared both as multilamellar vesicles (MLV) and Small unilamellar (SUV). It was demonstrated that the IFN-g secretion was higher for DDA SUV liposome formulation (p<0.05), suggesting that ThrCer encapsulation in this liposome formulation resulted in a higher uptake by DCs.
Resumo:
The current study aimed to exploit the electrostatic associative interaction between carrageenan and gelatin to optimise a formulation of lyophilised orally disintegrating tablets (ODTs) suitable for multiparticulate delivery. A central composite face centred (CCF) design was applied to study the influence of formulation variables (gelatin, carrageenan and alanine concentrations) on the crucial responses of the formulation (disintegration time, hardness, viscosity and pH). The disintegration time and viscosity were controlled by the associative interaction between gelatin and carrageenan upon hydration which forms a strong complex that increases the viscosity of the stock solution and forms tablet with higher resistant to disintegration in aqueous medium. Therefore, the levels of carrageenan, gelatin and their interaction in the formulation were the significant factors. In terms of hardness, increasing gelatin and alanine concentration was the most effective way to improve tablet hardness. Accordingly, optimum concentrations of these excipients were needed to find the best balance that fulfilled all formulation requirements. The revised model showed high degree of predictability and optimisation reliability and therefore was successful in developing an ODT formulation with optimised properties that were able deliver enteric coated multiparticulates of omeprazole without compromising their functionality.
Resumo:
Despite recent Success, many fast-disintegrating tablets (FDTs) still face problems of low mechanical strength, poor mouth-feel and higher disintegration times. This Study aimed to optimise FDTS using a progressive three-stage approach. A series of hardness, fracturability and disintegration time tests were performed on the formulations at each stage. During Stage 1, tablets were prepared in concentrations between 2% and 5% w/w, and were formulated at each concentration as single and combination bloom strength gelatin (BSG) using 75 and 225 BSGs. Analysis revealed that both hardness and disintegration time increased with an increase in gelatin concentration. A combination (5% gelatin) FDT comprising a 50:50 ratio of 75:225 BSGs (hardness: 13.7 +/- 0.9 N and disintegration time: 24.1 +/- 0.6 s) was judged the most ideal, and was carried forward to Stage II: the addition of the saccharides sorbitol, mannitol and sucrose in concentrations between 10% and 80% w/w. The best properties were exhibited by mannitol-containing formulations (50%-hardness: 30.9 +/- 2.8 N and disintegration time: 13.3 +/- 2.1 s), which were carried forward to the next stage: the addition of viscosity-modifying polymers to improve mouth-feel and aid pre-gastric retention. Addition of carbopol 974P-NF resulted in the enhancement of viscosity with a compromise of the hardness of the tablet, whereas Pluronic F127 (6%) showed an increase in disintegration time and viscosity with retention of mechanical propel-ties. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Poor water solubility is characterised by low dissolution rate and consequently reduced bioavailability. Formulation of solid dispersion of the drug has attracted considerable interest as a means of improving dissolution process of a range of poorly water soluble drugs. This current study investigates the formulation of solid dispersion for a range of poorly water soluble drugs with varying physicochemical properties including paracetamol, sulphamethoxazole, phenacetin, indomethacin, chloramphenicol, phenylbutazone and succinylsulphathiazole. Solid dispersions were prepared using various drugs to polymer ratios. PEG 8000 was selected as a carrier in the solid dispersions. The study revealed that inclusion of drug within the polymeric matrix, ratio of drug to polymer and physicochemical properties of the drug molecules enhance the dissolution rate. Characterisations of the solid dispersions were performed using DSC, FTIR and SEM. These studies revealed that all seven drugs were present in the amorphous form within the solid dispersions and there was a lack of interaction between the PEG 8000 and drug. Stability studies for solid dispersions showed that all seven drugs studied were unstable at accelerated conditions (40°C±2°C/75%RH±5%RH) whereas, they were found to be stable for 12 months at room conditions. Permeability of indomethacin, phenacetin, phenylbutazone and paracetamol were higher for solid dispersions as compared to drug alone across Caco-2 cell monolayers. From the cell uptake studies it was shown that PEG 8000 enhanced rhodamine123 uptake which suggested that PEG 8000 may increase the permeability of these drugs in solid dispersions. Gene expression profiles analyzing the expression changes in the ABC and solute carrier transporter during permeability studies.ABCA10, ABCB4, ABCC12, SLC12A6, MCT13, SLC22A12 and SLC6A6 gene expression were increased by indomethacin alone whereas solid dispersion of indomethacin resulted in a slight increase in expression. ABCC12 and SAMC gene expression was increased in case of paracetamol alone but slightly increased when exposed to solid dispersion of paracetamol.
Resumo:
Database systems have a user interface one of the components of which will normally be a query language which is based on a particular data model. Typically data models provide primitives to define, manipulate and query databases. Often these primitives are designed to form self-contained query languages. This thesis describes a prototype implementation of a system which allows users to specify queries against the database in a query language whose primitives are not those provided by the actual model on which the database system is based, but those provided by a different data model. The implementation chosen is the Functional Query Language Front End (FQLFE). This uses the Daplex functional data model and query language. Using FQLFE, users can specify the underlying database (based on the relational model) in terms of Daplex. Queries against this specified view can then be made in Daplex. FQLFE transforms these queries into the query language (Quel) of the underlying target database system (Ingres). The automation of part of the Daplex function definition phase is also described and its implementation discussed.
Resumo:
The strategies and operations of the Rover Group were investigated using a behaviour based longitudinal examination. The investigating method used was developed from Mintzberg's classical diachronic study approach through the adoption of an observing participant approach supplemented with probes into specific areas of the organisation's activities. The thesis argues, through the use of a future-forward perspective of organisation capability, that an organisation's future capability can be assessed. The thesis questions the periodisation approach normally adopted in longitudinal studies and proposes an alternative method which the author believes generates a better understanding of the operations and future potential of the organisation. This method also produces generalisations which can be readily applied to other organisations. The introduction of a process perspective to behavioural studies has led to the promise of a unified understanding of strategic management and organisation development.
Resumo:
The aim of this research was to formulate a novel biodegradable, biocompatible cationic microparticle vector for the delivery of DNA vaccines. The work builds upon previous research by Singh et al which described the adsorption of DNA to the surface of poly (D,L-lactide-co-glycolide) (PLG) microparticles stabilised with the surfactant cetyltrimethyl ammonium bromide (CT AB). This work demonstrated the induction of antibody and cellular immune responses to HIV proteins encoded on plasmid DNA adsorbed to the particle surface in mice, guinea pigs and non-human primates (Singh et aI, 2000; O'Hagan et aI, 2001). However, the use of surfactants in microparticle formulations for human vaccination is undesirable due to long term safety issues. Therefore, the present research aim was to develop an adsorbed DNA vaccine with enhanced potency and increased safety compared to CTAB stabilised PLG microparticles (PLG/CTAB) by replacement of the surfactant CTAB with an alternative cationic agent. The cationic polymers chitosan and poly (N- vinylpyrrolidone/2-dimethylaminoethyl methacrylate), dimethyl sulfate quaternary (PVP-PDAEMA) were investigated as alternative stabilisers to CTAB. From a variety of initial formulations, the most promising vector(s) for DNA vaccination were selected based on physicochemical data (chapter 3) and in vitro DNA loading and release characteristics (chapter 4). The chosen formulation(s) were analysed in greater depth (chapters 3 and 4), and gene expression was assessed by in vitro cell transfection studies using 293T kidney epithelial and C2C12 myoblast non-phagocytic cell lines (chapter 5). The cytotoxicity of the microparticles and their constituents were also evaluated in vitro (chapter 5). Stability and suitability of the formulation(s) for commercial production were assessed by cryopreparation and lyophilisation studies (chapters 3 and 4). Gene expression levels in cells of the immune response were evaluated by microparticle transfection of the dendritic cell (DC) line 2.4 and primary bone marrow derived DCs (chapter 6). In vivo, mice were injected i.m. with the formulations deemed most promising on the basis of in vitro studies and humoral and cellular immune responses were evaluated (chapter 6).