14 resultados para quantum Fisher information
em Aston University Research Archive
Resumo:
The focus of this thesis is the extension of topographic visualisation mappings to allow for the incorporation of uncertainty. Few visualisation algorithms in the literature are capable of mapping uncertain data with fewer able to represent observation uncertainties in visualisations. As such, modifications are made to NeuroScale, Locally Linear Embedding, Isomap and Laplacian Eigenmaps to incorporate uncertainty in the observation and visualisation spaces. The proposed mappings are then called Normally-distributed NeuroScale (N-NS), T-distributed NeuroScale (T-NS), Probabilistic LLE (PLLE), Probabilistic Isomap (PIso) and Probabilistic Weighted Neighbourhood Mapping (PWNM). These algorithms generate a probabilistic visualisation space with each latent visualised point transformed to a multivariate Gaussian or T-distribution, using a feed-forward RBF network. Two types of uncertainty are then characterised dependent on the data and mapping procedure. Data dependent uncertainty is the inherent observation uncertainty. Whereas, mapping uncertainty is defined by the Fisher Information of a visualised distribution. This indicates how well the data has been interpolated, offering a level of ‘surprise’ for each observation. These new probabilistic mappings are tested on three datasets of vectorial observations and three datasets of real world time series observations for anomaly detection. In order to visualise the time series data, a method for analysing observed signals and noise distributions, Residual Modelling, is introduced. The performance of the new algorithms on the tested datasets is compared qualitatively with the latent space generated by the Gaussian Process Latent Variable Model (GPLVM). A quantitative comparison using existing evaluation measures from the literature allows performance of each mapping function to be compared. Finally, the mapping uncertainty measure is combined with NeuroScale to build a deep learning classifier, the Cascading RBF. This new structure is tested on the MNist dataset achieving world record performance whilst avoiding the flaws seen in other Deep Learning Machines.
Resumo:
Natural gradient learning is an efficient and principled method for improving on-line learning. In practical applications there will be an increased cost required in estimating and inverting the Fisher information matrix. We propose to use the matrix momentum algorithm in order to carry out efficient inversion and study the efficacy of a single step estimation of the Fisher information matrix. We analyse the proposed algorithm in a two-layer network, using a statistical mechanics framework which allows us to describe analytically the learning dynamics, and compare performance with true natural gradient learning and standard gradient descent.
Resumo:
Computer models, or simulators, are widely used in a range of scientific fields to aid understanding of the processes involved and make predictions. Such simulators are often computationally demanding and are thus not amenable to statistical analysis. Emulators provide a statistical approximation, or surrogate, for the simulators accounting for the additional approximation uncertainty. This thesis develops a novel sequential screening method to reduce the set of simulator variables considered during emulation. This screening method is shown to require fewer simulator evaluations than existing approaches. Utilising the lower dimensional active variable set simplifies subsequent emulation analysis. For random output, or stochastic, simulators the output dispersion, and thus variance, is typically a function of the inputs. This work extends the emulator framework to account for such heteroscedasticity by constructing two new heteroscedastic Gaussian process representations and proposes an experimental design technique to optimally learn the model parameters. The design criterion is an extension of Fisher information to heteroscedastic variance models. Replicated observations are efficiently handled in both the design and model inference stages. Through a series of simulation experiments on both synthetic and real world simulators, the emulators inferred on optimal designs with replicated observations are shown to outperform equivalent models inferred on space-filling replicate-free designs in terms of both model parameter uncertainty and predictive variance.
Resumo:
This paper presents a greedy Bayesian experimental design criterion for heteroscedastic Gaussian process models. The criterion is based on the Fisher information and is optimal in the sense of minimizing parameter uncertainty for likelihood based estimators. We demonstrate the validity of the criterion under different noise regimes and present experimental results from a rabies simulator to demonstrate the effectiveness of the resulting approximately optimal designs.
Resumo:
Optimal design for parameter estimation in Gaussian process regression models with input-dependent noise is examined. The motivation stems from the area of computer experiments, where computationally demanding simulators are approximated using Gaussian process emulators to act as statistical surrogates. In the case of stochastic simulators, which produce a random output for a given set of model inputs, repeated evaluations are useful, supporting the use of replicate observations in the experimental design. The findings are also applicable to the wider context of experimental design for Gaussian process regression and kriging. Designs are proposed with the aim of minimising the variance of the Gaussian process parameter estimates. A heteroscedastic Gaussian process model is presented which allows for an experimental design technique based on an extension of Fisher information to heteroscedastic models. It is empirically shown that the error of the approximation of the parameter variance by the inverse of the Fisher information is reduced as the number of replicated points is increased. Through a series of simulation experiments on both synthetic data and a systems biology stochastic simulator, optimal designs with replicate observations are shown to outperform space-filling designs both with and without replicate observations. Guidance is provided on best practice for optimal experimental design for stochastic response models. © 2013 Elsevier Inc. All rights reserved.
Resumo:
This thesis describes the design and synthesis of a variety of functionalised phosphine oxides and sulfides, based on the structure of trioctylphosphine oxide, synthesised for the purpose of surface modification of quantum dots. The ability of the ligands to modify the surface chemistry via displacement of the original hexadecylamine capping layer of quantum dots was evaluated. Finally the surface modified quantum dots were investigated for enhancement in their inherent properties and improved compatibility with the various applications for which they were initially designed. Upon the commencement of research involving quantum dots it became apparent that more information on their behaviour and interaction with the environment was required. The limits of the inherent stability of hexadecylamine capped quantum dots were investigated by exposure to a number of different environments. The effect upon the stability of the quantum dots was monitored by changes in the photoluminescence ability of their cores. Subtle differences between different batches of quantum dots were observed and the necessity to account for these in future applications noted. Lastly the displacement of the original hexadecylamine coating with the "designer" functionalised ligands was evaluated to produce a set of conditions that would result in the best possible surface modification. A general procedure was elucidated however it was discovered that each displacement still required slight adjustment by consideration of the other factors such as the difference in ligand structure and the individuality of the various batches of quantum dots. This thesis also describes a procedure for the addition of a protective layer to the surface of quantum dots by cross-linking the functionalised ligands bound to the surface via an acyclic diene metathesis polymerisation. A detailed description of the problems encountered in the analysis of these materials combined with the use of novel techniques such as diffusion ordered spectroscopy is provided as a means to overcome the limitations encountered. Finally a demonstration of the superior stability, upon exposure to a range of aggressive environments of these protected materials compared with those before cross-linking provided physical proof of the cross-linking process and the advantages of the cross-linking modification. Finally this thesis includes the presentation of initial work into the production of luminescent nanocrystal encoded resin beads for the specific use in solid phase combinatorial chemistry. Demonstration of the successful covalent incorporation of quantum dots into the polymeric matrices of non-functionalised and functionalised resin beads is described. Finally by preliminary work to address and overcome the possible limitations that may be encountered in the production and general employment of these materials in combinatorial techniques is given.
Resumo:
Background: Currently, no review has been completed regarding the information-gathering process for the provision of medicines for self-medication in community pharmacies in developing countries. Objective: To review the rate of information gathering and the types of information gathered when patients present for self-medication requests. Methods: Six databases were searched for studies that described the rate of information gathering and/or the types of information gathered in the provision of medicines for self-medication in community pharmacies in developing countries. The types of information reported were classified as: signs and symptoms, patient identity, action taken, medications, medical history, and others. Results: Twenty-two studies met the inclusion criteria. Variations in the study populations, types of scenarios, research methods, and data reporting were observed. The reported rate of information gathering varied from 18% to 97%, depending on the research methods used. Information on signs and symptoms and patient identity was more frequently reported to be gathered compared with information on action taken, medications, and medical history. Conclusion: Evidence showed that the information-gathering process for the provision of medicines for self-medication via community pharmacies in developing countries is inconsistent. There is a need to determine the barriers to appropriate information-gathering practice as well as to develop strategies to implement effective information-gathering processes. It is also recommended that international and national pharmacy organizations, including pharmacy academics and pharmacy researchers, develop a consensus on the types of information that should be reported in the original studies. This will facilitate comparison across studies so that areas that need improvement can be identified. © 2013 Elsevier Inc.
Resumo:
Descriptions of vegetation communities are often based on vague semantic terms describing species presence and dominance. For this reason, some researchers advocate the use of fuzzy sets in the statistical classification of plant species data into communities. In this study, spatially referenced vegetation abundance values collected from Greek phrygana were analysed by ordination (DECORANA), and classified on the resulting axes using fuzzy c-means to yield a point data-set representing local memberships in characteristic plant communities. The fuzzy clusters matched vegetation communities noted in the field, which tended to grade into one another, rather than occupying discrete patches. The fuzzy set representation of the community exploited the strengths of detrended correspondence analysis while retaining richer information than a TWINSPAN classification of the same data. Thus, in the absence of phytosociological benchmarks, meaningful and manageable habitat information could be derived from complex, multivariate species data. We also analysed the influence of the reliability of different surveyors' field observations by multiple sampling at a selected sample location. We show that the impact of surveyor error was more severe in the Boolean than the fuzzy classification. © 2007 Springer.
Resumo:
We describe a free space quantum cryptography system which is designed to allow continuous unattended key exchanges for periods of several days, and over ranges of a few kilometres. The system uses a four-laser faint-pulse transmission system running at a pulse rate of 10MHz to generate the required four alternative polarization states. The receiver module similarly automatically selects a measurement basis and performs polarization measurements with four avalanche photodiodes. The controlling software can implement the full key exchange including sifting, error correction, and privacy amplification required to generate a secure key.
Resumo:
The statistical distribution, when determined from an incomplete set of constraints, is shown to be suitable as host for encrypted information. We design an encoding/decoding scheme to embed such a distribution with hidden information. The encryption security is based on the extreme instability of the encoding procedure. The essential feature of the proposed system lies in the fact that the key for retrieving the code is generated by random perturbations of very small value. The security of the proposed encryption relies on the security to interchange the secret key. Hence, it appears as a good complement to the quantum key distribution protocol. © 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we use the quantum Jensen-Shannon divergence as a means of measuring the information theoretic dissimilarity of graphs and thus develop a novel graph kernel. In quantum mechanics, the quantum Jensen-Shannon divergence can be used to measure the dissimilarity of quantum systems specified in terms of their density matrices. We commence by computing the density matrix associated with a continuous-time quantum walk over each graph being compared. In particular, we adopt the closed form solution of the density matrix introduced in Rossi et al. (2013) [27,28] to reduce the computational complexity and to avoid the cumbersome task of simulating the quantum walk evolution explicitly. Next, we compare the mixed states represented by the density matrices using the quantum Jensen-Shannon divergence. With the quantum states for a pair of graphs described by their density matrices to hand, the quantum graph kernel between the pair of graphs is defined using the quantum Jensen-Shannon divergence between the graph density matrices. We evaluate the performance of our kernel on several standard graph datasets from both bioinformatics and computer vision. The experimental results demonstrate the effectiveness of the proposed quantum graph kernel.
Resumo:
Kernel methods provide a convenient way to apply a wide range of learning techniques to complex and structured data by shifting the representational problem from one of finding an embedding of the data to that of defining a positive semidefinite kernel. One problem with the most widely used kernels is that they neglect the locational information within the structures, resulting in less discrimination. Correspondence-based kernels, on the other hand, are in general more discriminating, at the cost of sacrificing positive-definiteness due to their inability to guarantee transitivity of the correspondences between multiple graphs. In this paper we generalize a recent structural kernel based on the Jensen-Shannon divergence between quantum walks over the structures by introducing a novel alignment step which rather than permuting the nodes of the structures, aligns the quantum states of their walks. This results in a novel kernel that maintains localization within the structures, but still guarantees positive definiteness. Experimental evaluation validates the effectiveness of the kernel for several structural classification tasks. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
The quantum Jensen-Shannon divergence kernel [1] was recently introduced in the context of unattributed graphs where it was shown to outperform several commonly used alternatives. In this paper, we study the separability properties of this kernel and we propose a way to compute a low-dimensional kernel embedding where the separation of the different classes is enhanced. The idea stems from the observation that the multidimensional scaling embeddings on this kernel show a strong horseshoe shape distribution, a pattern which is known to arise when long range distances are not estimated accurately. Here we propose to use Isomap to embed the graphs using only local distance information onto a new vectorial space with a higher class separability. The experimental evaluation shows the effectiveness of the proposed approach. © 2013 Springer-Verlag.
Resumo:
In this paper, we develop a new family of graph kernels where the graph structure is probed by means of a discrete-time quantum walk. Given a pair of graphs, we let a quantum walk evolve on each graph and compute a density matrix with each walk. With the density matrices for the pair of graphs to hand, the kernel between the graphs is defined as the negative exponential of the quantum Jensen–Shannon divergence between their density matrices. In order to cope with large graph structures, we propose to construct a sparser version of the original graphs using the simplification method introduced in Qiu and Hancock (2007). To this end, we compute the minimum spanning tree over the commute time matrix of a graph. This spanning tree representation minimizes the number of edges of the original graph while preserving most of its structural information. The kernel between two graphs is then computed on their respective minimum spanning trees. We evaluate the performance of the proposed kernels on several standard graph datasets and we demonstrate their effectiveness and efficiency.