5 resultados para predictive accuracy
em Aston University Research Archive
Resumo:
We address the important bioinformatics problem of predicting protein function from a protein's primary sequence. We consider the functional classification of G-Protein-Coupled Receptors (GPCRs), whose functions are specified in a class hierarchy. We tackle this task using a novel top-down hierarchical classification system where, for each node in the class hierarchy, the predictor attributes to be used in that node and the classifier to be applied to the selected attributes are chosen in a data-driven manner. Compared with a previous hierarchical classification system selecting classifiers only, our new system significantly reduced processing time without significantly sacrificing predictive accuracy.
Resumo:
Peptides are of great therapeutic potential as vaccines and drugs. Knowledge of physicochemical descriptors, including the partition coefficient P (commonly expressed in logarithm form: logP), is useful for screening out unsuitable molecules and also for the development of predictive Quantitative Structure-Activity Relationships (QSARs). In this paper we develop a new approach to the prediction of LogP values for peptides based on an empirical relationship between global molecular properties and measured physical properties. Our method was successful in terms of peptide prediction (total r2 = 0.641). The final model consisted of 5 physicochemical descriptors (molecular weight, number of single bonds, 2D-VDW volume, 2D-VSA hydrophobic and 2D-VSA polar). The approach is peptide specific and its predictive accuracy was high. Overall, 67% of the peptides were able to be predicted within +/-0.5 log units from the experimental values. Our method thus represents a novel prediction method with proven predictive ability.
Resumo:
Peptides are of great therapeutic potential as vaccines and drugs. Knowledge of physicochemical descriptors, including the partition coefficient logP, is useful for the development of predictive Quantitative Structure-Activity Relationships (QSARs). We have investigated the accuracy of available programs for the prediction of logP values for peptides with known experimental values obtained from the literature. Eight prediction programs were tested, of which seven programs were fragment-based methods: XLogP, LogKow, PLogP, ACDLogP, AlogP, Interactive Analysis's LogP and MlogP; and one program used a whole molecule approach: QikProp. The predictive accuracy of the programs was assessed using r(2) values, with ALogP being the most effective (r( 2) = 0.822) and MLogP the least (r(2) = 0.090). We also examined three distinct types of peptide structure: blocked, unblocked, and cyclic. For each study (all peptides, blocked, unblocked and cyclic peptides) the performance of programs rated from best to worse is as follows: all peptides - ALogP, QikProp, PLogP, XLogP, IALogP, LogKow, ACDLogP, and MlogP; blocked peptides - PLogP, XLogP, ACDLogP, IALogP, LogKow, QikProp, ALogP, and MLogP; unblocked peptides - QikProp, IALogP, ALogP, ACDLogP, MLogP, XLogP, LogKow and PLogP; cyclic peptides - LogKow, ALogP, XLogP, MLogP, QikProp, ACDLogP, IALogP. In summary, all programs gave better predictions for blocked peptides, while, in general, logP values for cyclic peptides were under-predicted and those of unblocked peptides were over-predicted.
Resumo:
The predictive accuracy of competing crude-oil price forecast densities is investigated for the 1994–2006 period. Moving beyond standard ARCH type models that rely exclusively on past returns, we examine the benefits of utilizing the forward-looking information that is embedded in the prices of derivative contracts. Risk-neutral densities, obtained from panels of crude-oil option prices, are adjusted to reflect real-world risks using either a parametric or a non-parametric calibration approach. The relative performance of the models is evaluated for the entire support of the density, as well as for regions and intervals that are of special interest for the economic agent. We find that non-parametric adjustments of risk-neutral density forecasts perform significantly better than their parametric counterparts. Goodness-of-fit tests and out-of-sample likelihood comparisons favor forecast densities obtained by option prices and non-parametric calibration methods over those constructed using historical returns and simulated ARCH processes. © 2010 Wiley Periodicals, Inc. Jrl Fut Mark 31:727–754, 2011
Resumo:
Background - Bipolar disorder (BD) is one of the leading causes of disability worldwide. Patients are further disadvantaged by delays in accurate diagnosis ranging between 5 and 10 years. We applied Gaussian process classifiers (GPCs) to structural magnetic resonance imaging (sMRI) data to evaluate the feasibility of using pattern recognition techniques for the diagnostic classification of patients with BD. Method - GPCs were applied to gray (GM) and white matter (WM) sMRI data derived from two independent samples of patients with BD (cohort 1: n = 26; cohort 2: n = 14). Within each cohort patients were matched on age, sex and IQ to an equal number of healthy controls. Results - The diagnostic accuracy of the GPC for GM was 73% in cohort 1 and 72% in cohort 2; the sensitivity and specificity of the GM classification were respectively 69% and 77% in cohort 1 and 64% and 99% in cohort 2. The diagnostic accuracy of the GPC for WM was 69% in cohort 1 and 78% in cohort 2; the sensitivity and specificity of the WM classification were both 69% in cohort 1 and 71% and 86% respectively in cohort 2. In both samples, GM and WM clusters discriminating between patients and controls were localized within cortical and subcortical structures implicated in BD. Conclusions - Our results demonstrate the predictive value of neuroanatomical data in discriminating patients with BD from healthy individuals. The overlap between discriminative networks and regions implicated in the pathophysiology of BD supports the biological plausibility of the classifiers.