17 resultados para homoclinic chaos
em Aston University Research Archive
Resumo:
Control of spatiotemporal chaos is achieved in the catalytic oxidation of CO on Pt(110) by localized modification of the kinetic properties of the surface chemical reaction. In the experiment, a small temperature heterogeneity is created on the surface by a focused laser beam. This heterogeneity constitutes a pacemaker and starts to emit target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos that is present in the absence of control. We compare this experimental result with a numerical study of the Krischer-Eiswirth-Ertl model for CO oxidation on Pt(110). We confirm the experimental findings and identify regimes where complete and partial controls are possible.
Resumo:
Chemical turbulence in the oscillatory catalytic CO oxidation on Pt(110) is suppressed by means of focused laser light. The laser locally heats the platinum surface which leads to a local increase of the oscillation frequency, and to the formation of a pacemaker which emits target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos present in the absence of laser light. Our experimental results are confirmed by a detailed numerical analysis of one- and two-dimensional media using the Krischer-Eiswirth-Ertl model for CO oxidation on Pt110. Different control regimes are identified and the dispersion relation of the system is determined using the pacemaker as an externally tunable wave source.
Resumo:
The simulated classical dynamics of a small molecule exhibiting self-organizing behavior via a fast transition between two states is analyzed by calculation of the statistical complexity of the system. It is shown that the complexity of molecular descriptors such as atom coordinates and dihedral angles have different values before and after the transition. This provides a new tool to identify metastable states during molecular self-organization. The highly concerted collective motion of the molecule is revealed. Low-dimensional subspaces dynamics is found sensitive to the processes in the whole, high-dimensional phase space of the system. © 2004 Wiley Periodicals, Inc.
Resumo:
Attractor properties of a popular discrete-time neural network model are illustrated through numerical simulations. The most complex dynamics is found to occur within particular ranges of parameters controlling the symmetry and magnitude of the weight matrix. A small network model is observed to produce fixed points, limit cycles, mode-locking, the Ruelle-Takens route to chaos, and the period-doubling route to chaos. Training algorithms for tuning this dynamical behaviour are discussed. Training can be an easy or difficult task, depending whether the problem requires the use of temporal information distributed over long time intervals. Such problems require training algorithms which can handle hidden nodes. The most prominent of these algorithms, back propagation through time, solves the temporal credit assignment problem in a way which can work only if the relevant information is distributed locally in time. The Moving Targets algorithm works for the more general case, but is computationally intensive, and prone to local minima.
Resumo:
This article considers the role of accounting in organisational decision making. It challenges the rational nature of decisions made in organisations through the use of accounting models and the problems of predicting the future through the use of such models. The use of accounting in this manner is evaluated from an epochal postmodern stance. Issues raised by chaos theory and the uncertainty principle are used to demonstrate problems with the predictive ability of accounting models. The authors argue that any consideration of the predictive value of accounting needs to change to incorporate a recognition of the turbulent external environment, if it is to be of use for organisational decision making. Thus it is argued that the role of accounting as a mechanism for knowledge creation regarding the future is fundamentally flawed. We take this as a starting-point to argue for the real purpose of the use of the predictive techniques of accounting, using its ritualistic role in the context of myth creation to argue for the cultural benefits of the use of such flawed techniques.
Resumo:
A framework that connects computational mechanics and molecular dynamics has been developed and described. As the key parts of the framework, the problem of symbolising molecular trajectory and the associated interrelation between microscopic phase space variables and macroscopic observables of the molecular system are considered. Following Shalizi and Moore, it is shown that causal states, the constituent parts of the main construct of computational mechanics, the e-machine, define areas of the phase space that are optimal in the sense of transferring information from the micro-variables to the macro-observables. We have demonstrated that, based on the decay of their Poincare´ return times, these areas can be divided into two classes that characterise the separation of the phase space into resonant and chaotic areas. The first class is characterised by predominantly short time returns, typical to quasi-periodic or periodic trajectories. This class includes a countable number of areas corresponding to resonances. The second class includes trajectories with chaotic behaviour characterised by the exponential decay of return times in accordance with the Poincare´ theorem.
Resumo:
In this contribution, certain aspects of the nonlinear dynamics of magnetic field lines are reviewed. First, the basic facts (known from literature) concerning the Hamiltonian structure are briefly summarized. The paper then concentrates on the following subjects: (i) Transition from the continuous description to discrete maps; (ii) Characteristics of incomplete chaos; (iii) Control of chaos. The presentation is concluded by some remarks on the motion of particles in stochastic magnetic fields.
Resumo:
It is shown that regimes with dynamical chaos are inherent not only to nonlinear system but they can be generated by initially linear systems and the requirements for chaotic dynamics and characteristics need further elaboration. Three simplest physical models are considered as examples. In the first, dynamic chaos in the interaction of three linear oscillators is investigated. Analogous process is shown in the second model of electromagnetic wave scattering in a double periodical inhomogeneous medium occupying half-space. The third model is a linear parametric problem for the electromagnetic field in homogeneous dielectric medium which permittivity is modulated in time. © 2008 Springer Science+Business Media, LLC.
Resumo:
This work presents significant development into chaotic mixing induced through periodic boundaries and twisting flows. Three-dimensional closed and throughput domains are shown to exhibit chaotic motion under both time periodic and time independent boundary motions, A property is developed originating from a signature of chaos, sensitive dependence to initial conditions, which successfully quantifies the degree of disorder withjn the mixing systems presented and enables comparisons of the disorder throughout ranges of operating parameters, This work omits physical experimental results but presents significant computational investigation into chaotic systems using commercial computational fluid dynamics techniques. Physical experiments with chaotic mixing systems are, by their very nature, difficult to extract information beyond the recognition that disorder does, does not of partially occurs. The initial aim of this work is to observe whether it is possible to accurately simulate previously published physical experimental results through using commercial CFD techniques. This is shown to be possible for simple two-dimensional systems with time periodic wall movements. From this, and subsequent macro and microscopic observations of flow regimes, a simple explanation is developed for how boundary operating parameters affect the system disorder. Consider the classic two-dimensional rectangular cavity with time periodic velocity of the upper and lower walls, causing two opposing streamline motions. The degree of disorder within the system is related to the magnitude of displacement of individual particles within these opposing streamlines. The rationale is then employed in this work to develop and investigate more complex three-dimensional mixing systems that exhibit throughputs and time independence and are therefore more realistic and a significant advance towards designing chaotic mixers for process industries. Domains inducing chaotic motion through twisting flows are also briefly considered. This work concludes by offering possible advancements to the property developed to quantify disorder and suggestions of domains and associated boundary conditions that are expected to produce chaotic mixing.
Resumo:
This thesis is about the study of relationships between experimental dynamical systems. The basic approach is to fit radial basis function maps between time delay embeddings of manifolds. We have shown that under certain conditions these maps are generically diffeomorphisms, and can be analysed to determine whether or not the manifolds in question are diffeomorphically related to each other. If not, a study of the distribution of errors may provide information about the lack of equivalence between the two. The method has applications wherever two or more sensors are used to measure a single system, or where a single sensor can respond on more than one time scale: their respective time series can be tested to determine whether or not they are coupled, and to what degree. One application which we have explored is the determination of a minimum embedding dimension for dynamical system reconstruction. In this special case the diffeomorphism in question is closely related to the predictor for the time series itself. Linear transformations of delay embedded manifolds can also be shown to have nonlinear inverses under the right conditions, and we have used radial basis functions to approximate these inverse maps in a variety of contexts. This method is particularly useful when the linear transformation corresponds to the delay embedding of a finite impulse response filtered time series. One application of fitting an inverse to this linear map is the detection of periodic orbits in chaotic attractors, using suitably tuned filters. This method has also been used to separate signals with known bandwidths from deterministic noise, by tuning a filter to stop the signal and then recovering the chaos with the nonlinear inverse. The method may have applications to the cancellation of noise generated by mechanical or electrical systems. In the course of this research a sophisticated piece of software has been developed. The program allows the construction of a hierarchy of delay embeddings from scalar and multi-valued time series. The embedded objects can be analysed graphically, and radial basis function maps can be fitted between them asynchronously, in parallel, on a multi-processor machine. In addition to a graphical user interface, the program can be driven by a batch mode command language, incorporating the concept of parallel and sequential instruction groups and enabling complex sequences of experiments to be performed in parallel in a resource-efficient manner.
Resumo:
We propose a new concept of a fiber laser architecture supporting self-similar pulse evolution in the amplifier and nonlinear spectral pulse compression in the passive fiber. The latter process allows for transform-limited picosecond pulse generation, and improves the laser’s power efficiency by preventing strong spectral filtering from being highly dissipative. Aside from laser technology, the proposed scheme opens new possibilities for studying nonlinear dynamical processes. As an example, we demonstrate a clear period-doubling route to chaos in such a nonlinear laser system.
Resumo:
This paper is concerned with synchronization of complex stochastic dynamical networks in the presence of noise and functional uncertainty. A probabilistic control method for adaptive synchronization is presented. All required probabilistic models of the network are assumed to be unknown therefore estimated to be dependent on the connectivity strength, the state and control values. Robustness of the probabilistic controller is proved via the Liapunov method. Furthermore, based on the residual error of the network states we introduce the definition of stochastic pinning controllability. A coupled map lattice with spatiotemporal chaos is taken as an example to illustrate all theoretical developments. The theoretical derivation is complemented by its validation on two representative examples.
Resumo:
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.
Resumo:
The traditional use of global and centralised control methods, fails for large, complex, noisy and highly connected systems, which typify many real world industrial and commercial systems. This paper provides an efficient bottom up design of distributed control in which many simple components communicate and cooperate to achieve a joint system goal. Each component acts individually so as to maximise personal utility whilst obtaining probabilistic information on the global system merely through local message-passing. This leads to an implied scalable and collective control strategy for complex dynamical systems, without the problems of global centralised control. Robustness is addressed by employing a fully probabilistic design, which can cope with inherent uncertainties, can be implemented adaptively and opens a systematic rich way to information sharing. This paper opens the foreseen direction and inspects the proposed design on a linearised version of coupled map lattice with spatiotemporal chaos. A version close to linear quadratic design gives an initial insight into possible behaviours of such networks.