31 resultados para goldfish, white light, color vision, saturation
em Aston University Research Archive
Resumo:
The classic hypothesis of Livingstone and Hubel (1984, 1987) proposed two types of color pathways in primate visual cortex based on recordings from single cells: a segregated, modularpathway that signals color but provides little information about shape or form and a second pathway that signals color differences and so defines forms without the need to specify their colors. A major problem has been to reconcile this neurophysiological hypothesis with the behavioral data. A wealth of psychophysical studies has demonstrated that color vision has orientation-tuned responses and little impairment on form related tasks, but these have not revealed any direct evidence for nonoriented mechanisms. Here we use a psychophysical method of subthreshold summation across orthogonal orientations for isoluminant red-green gratings in monocular and dichoptic viewing conditions to differentiate between nonoriented and orientation-tuned responses to color contrast. We reveal nonoriented color responses at low spatial frequencies (0.25-0.375 c/deg) under monocular conditions changing to orientation-tuned responses at higher spatial frequencies (1.5 c/deg) and under binocular conditions. We suggest that two distinct pathways coexist in color vision at the behavioral level, revealed at different spatial scales: one is isotropic, monocular, and best equipped for the representation of surface color, and the other is orientation-tuned, binocular, and selective for shape and form. This advances our understanding of the organization of the neural pathways involved in human color vision and provides a strong link between neurophysiological and behavioral data. © 2013 ARVO.
Resumo:
The future generation of modern illumination should not only be cheap and highly efficient, but also demonstrate high quality of light, light which allows better color differentiation and fidelity. Here we are presenting a novel approach to create a white solid-state light source providing ultimate color rendition necessary for a number of applications. The proposed semi-hybrid device combines a monolithic blue-cyan light emitting diode (MBC LED) with a green-red phosphor mixture. It has shown a superior color rendering index (CRI), 98.6, at correlated color temperature of around 3400 K. The MBC LED epi-structure did not suffer from the efficiency reduction typical for monolithic multi-color emitters and was implemented in the two most popular chip designs: “epi-up” and “flip-chip”. Redistribution of the blue and cyan band amplitudes in the white-light emission spectrum, using the operating current, is found to be an effective tool for fine tuning the color characteristics. (Figure presented.).
Resumo:
The bleaching of the n = 1 heavy-hole and light-hole exciton absorption has been studied at room temperature and zero bias in a strain-balanced InGaAs/InAsP multiple quantum well. Pump-probe spectroscopy was used to measure the decay of the light-hole absorption saturation, giving a hole lifetime of only 280 ps. As only 16 meV separates the light- and heavy-hole bands, the short escape time can be explained by thermalization between these bands followed by thermionic emission over the heavy-hole barrier. The saturation density was estimated to be 1 × 1016 cm-3; this is much lower than expected for tensile-strained wells where both heavy and light holes have large in-plane masses. © 1998 American Institute of Physics.
Resumo:
We present an imaging system based on light emitting diode (LED) illumination that produces multispectral optical images of the human ocular fundus. It uses a conventional fundus camera equipped with a high power LED light source and a highly sensitive electron-multiplying charge coupled device camera. It is able to take pictures at a series of wavelengths in rapid succession at short exposure times, thereby eliminating the image shift introduced by natural eye movements (saccades). In contrast with snapshot systems the images retain full spatial resolution. The system is not suitable for applications where the full spectral resolution is required as it uses discrete wavebands for illumination. This is not a problem in retinal imaging where the use of selected wavelengths is common. The modular nature of the light source allows new wavelengths to be introduced easily and at low cost. The use of wavelength-specific LEDs as a source is preferable to white light illumination and subsequent filtering of the remitted light as it minimizes the total light exposure of the subject. The system is controlled via a graphical user interface that enables flexible control of intensity, duration, and sequencing of sources in synchrony with the camera. Our initial experiments indicate that the system can acquire multispectral image sequences of the human retina at exposure times of 0.05 s in the range of 500-620 nm with mean signal to noise ratio of 17 dB (min 11, std 4.5), making it suitable for quantitative analysis with application to the diagnosis and screening of eye diseases such as diabetic retinopathy and age-related macular degeneration.
Resumo:
Internal Quantum Efficiency (IQE) of two-colour monolithic white light emitting diode (LED) was measured by temperature dependant electro-luminescence (TDEL) and analysed with modified rate equation based on ABC model. External, internal and injection efficiencies of blue and green quantum wells were analysed separately. Monolithic white LED contained one green InGaN QW and two blue QWs being separated by GaN barrier. This paper reports also the tunable behaviour of correlated colour temperature (CCT) in pulsed operation mode and effect of self-heating on device performance. © 2014 SPIE.
Resumo:
Aims: To survey eye care practitioners from around the world regarding their current practice for anterior eye health recording to inform guidelines on best practice. Methods: The on-line survey examined the reported use of: word descriptions, sketching, grading scales or photographs; paper or computerised record cards and whether these were guided by proforma headings; grading scale choice, signs graded, level of precision, regional grading; and how much time eye care practitioners spent on average on anterior eye health recording. Results: Eight hundred and nine eye care practitioners from across the world completed the survey. Word description (p <. 0.001), sketches (p = 0.002) and grading scales (p <. 0.001) were used more for recording the anterior eye health of contact lens patients than other patients, but photography was used similarly (p = 0.132). Of the respondents, 84.5% used a grading scale, 13.5% using two, with the original Efron (51.6%) and CCLRU/Brien-Holden-Vision-Institute (48.5%) being the most popular. The median features graded was 11 (range 1-23), frequency from 91.6% (bulbar hyperaemia) to 19.6% (endothelial blebs), with most practitioners grading to the nearest unit (47.4%) and just 14.7% to one decimal place. The average time taken to report anterior eye health was reported to be 6.8. ±. 5.7. min, with the maximum time available 14.0. ±. 11. min. Conclusions: Developed practice and research evidence allows best practice guidelines for anterior eye health recording to be recommended. It is recommended to: record which grading scale is used; always grade to one decimal place, record what you see live rather than based on how you intend to manage a condition; grade bulbar and limbal hyperaemia, limbal neovascularisation, conjunctival papillary redness and roughness (in white light to assess colouration with fluorescein instilled to aid visualisation of papillae/follicles), blepharitis, meibomian gland dysfunction and sketch staining (both corneal and conjunctival) at every visit. Record other anterior eye features only if they are remarkable, but indicate that the key tissue which have been examined.
Resumo:
Background & aims It has been suggested that retinal lutein may improve visual acuity for images that are illuminated by white light. Our aim was to determine the effect of a lutein and antioxidant dietary supplement on visual function. Methods A prospective, 9- and 18-month, double-masked randomised controlled trial. For the 9-month trial, 46 healthy participants were randomised (using a random number generator) to placebo (n=25) or active (n=21) groups. Twenty-nine of these subjects went on to complete 18 months of supplementation, 15 from the placebo group, and 14 from the active group. The active group supplemented daily with 6mg lutein combined with vitamins and minerals. Outcome measures were distance and near visual acuity, contrast sensitivity, and photostress recovery time. The study had 80% power at the 5% significance level for each outcome measure. Data were collected at baseline, 9, and 18 months. Results There were no statistically significant differences between groups for any of the outcome measures over 9 or 18 months. Conclusion There was no evidence of effect of 9 or 18 months of daily supplementation with a lutein-based nutritional supplement on visual function in this group of people with healthy eyes. ISRCTN78467674.
Resumo:
Objective: To study the density and cross-sectional area of axons in the optic nerve in elderly control subjects and in cases of Alzheimer's disease (AD) using an image analysis system. Methods: Sections of optic nerves from control and AD patients were stained with toluidine blue to reveal axon profiles. Results: The density of axons was reduced in both the center and peripheral portions of the optic nerve in AD compared with control patients. Analysis of axons with different cross-sectional areas suggested a specific loss of the smaller sized axons in AD, i.e., those with areas less that 1.99 μm2. An analysis of axons >11 μm2 in cross-sectional area suggested no specific loss of the larger axons in this group of patients. Conclusions: The data suggest that image analysis provides an accurate and reproducible method of quantifying axons in the optic nerve. In addition, the data suggest that axons are lost throughout the optic nerve with a specific loss of the smaller-sized axons. Loss of the smaller axons may explain the deficits in color vision observed in a significant proportion of patients with AD.
Resumo:
Bladder cancer is among the most common cancers worldwide (4th in men). It is responsible for high patient morbidity and displays rapid recurrence and progression. Lack of sensitivity of gold standard techniques (white light cystoscopy, voided urine cytology) means many early treatable cases are missed. The result is a large number of advanced cases of bladder cancer which require extensive treatment and monitoring. For this reason, bladder cancer is the single most expensive cancer to treat on a per patient basis. In recent years, autofluorescence spectroscopy has begun to shed light into disease research. Of particular interest in cancer research are the fluorescent metabolic cofactors NADH and FAD. Early in tumour development, cancer cells often undergo a metabolic shift (the Warburg effect) resulting in increased NADH. The ratio of NADH to FAD ("redox ratio") can therefore be used as an indicator of the metabolic status of cells. Redox ratio measurements have been used to differentiate between healthy and cancer breast cells and to monitor cellular responses to therapies. Here, we have demonstrated, using healthy and bladder cancer cell lines, a statistically significant difference in the redox ratio of bladder cancer cells, indicative of a metabolic shift. To do this we customised a standard flow cytometer to excite and record fluorescence specifically from NADH and FAD, along with a method for automatically calculating the redox ratio of individual cells within large populations. These results could inform the design of novel probes and screening systems for the early detection of bladder cancer.
Resumo:
A compact, fiber-based spectrometer for biomedical application utilizing a tilted fiber Bragg grating (TFBG) as integrated dispersive element is demonstrated. Based on a 45° UV-written PS750 TFBG a refractive spectrometer with 2.06 radiant/μm dispersion and a numerical aperture of 0.1 was set up and tested as integrated detector for an optical coherence tomography (OCT) system. Featuring a 23 mm long active region at the fiber the spectrum is projected via a cylindrical lens for vertical beam collimation and focused by an achromatic doublet onto the detector array. Covering 740 nm to 860 nm the spectrometer was optically connected to a broadband white light interferometer and a wide field scan head and electronically to an acquisition and control computer. Tomograms of ophthalmic and dermal samples obtained by the frequency domain OCT-system were obtained achieving 2.84 μm axial and 7.6 μm lateral resolution. © 2014 SPIE.
Resumo:
Purpose: To investigate the effects of light filters on reading speed in normal and low vision due to age-related macular degeneration (AMD). Methods: Reading speed was determined for 12 subjects with normal vision and 12 subjects with non-exudative AMD using stationary lowercase nonsensical print in Times Roman font and four light filters; a yellow Corning Photochromic Filter (CPF) 450, a grey neural density (ND) filter, an individual filter obtained using the Intuitive Colorimeter® and a clear filter. Results: There was no statistically significant light filter effect on reading speed for the normal subjects. The AMD group demonstrated a statistically significant 5% average improvement in reading speed with the CPF450 compared with the other filters although some AMD subjects had improvements of 10-15%. Conclusions: Light filters obtained using the Intuitive Colorimeter® performed poorly when compared with the CPF450, ND and clear filters for both the study groups. For the AMD group, average reading speed was statistically greater with the CPF450 than the other filters, however it is questionable whether the improvement (5%) would be clinically significant. As some of the subjects with AMD had greater improvements with the CPF450 we advocate clinical assessment of light filters using existing protocols on an individual basis. © 2004 The College of Optometrists.
Resumo:
Background - The aim was to derive equations for the relationship between unaided vision and age, pupil diameter, iris colour and sphero-cylindrical refractive error. Methods - Data were collected from 663 healthy right eyes of white subjects aged 20 to 70 years. Subjective sphero-cylindrical refractive errors ranged from -6.8 to +9.4 D (mean spherical equivalent), -1.5 to +1.9 D (orthogonal component, J0) and -0.8 to 1.0 D (oblique component, J45). Cylinder axis orientation was orthogonal in 46 per cent of the eyes and oblique in 18 per cent. Unaided vision (-0.3 to +1.3 logMAR), pupil diameter (2.3 to 7.5 mm) and iris colour (67 per cent light/blue irides) was recorded. The sample included mostly females (60 per cent) and many contact lens wearers (42 per cent) and so the influences of these parameters were also investigated. Results - Decision tree analysis showed that sex, iris colour, contact lens wear and cylinder axis orientation did not influence the relationship between unaided vision and refractive error. New equations for the dependence of the minimum angle of resolution on age and pupil diameter arose from step backwards multiple linear regressions carried out separately on the myopes (2.91.scalar vector +0.51.pupil diameter -3.14 ) and hyperopes (1.55.scalar vector + 0.06.age – 3.45 ). Conclusion - The new equations may be useful in simulators designed for teaching purposes as they accounted for 81 per cent (for myopes) and 53 per cent (for hyperopes) of the variance in measured data. In comparison, previously published equations accounted for not more than 76 per cent (for myopes) and 24 per cent (for hyperopes) of the variance depending on whether they included pupil size. The new equations are, as far as is known to the authors, the first to include age. The age-related decline in accommodation is reflected in the equation for hyperopes.
Resumo:
PURPOSE: To examine the effect of uncorrected astigmatism in older adults. SETTING: University Vision Clinic METHOD: Twenty-one healthy presbyopes, aged 58.9±2.8 years, had astigmatism of 0.0 to -4.0 x 90?DC and -3.0DC of cylinder at 90?, 180? and 45? induced with spectacle lenses, with the mean spherical equivalent compensated to plano, in random order. Visual acuity was assessed binocularly using a computerised test chart at 95%, 50% and 10% contrast. Near acuity and reading speed were measured using standardised reading texts. Light scatter was quantified with the cQuant and driving reaction times with a computer simulator. Finally visual clarity of a mobile phone and computer screen was subjectively rated. RESULTS: Distance visual acuity decreased with increasing uncorrected astigmatic power (F=174.50, p<0.001) and was reduced at lower contrasts (F=170.77, p<0.001). Near visual acuity and reading speed also decreased with increasing uncorrected astigmatism power (p<0.001). Light scatter was not significantly affected by uncorrected astigmatism (p>0.05), but the reliability and variability of measurements decreased with increasing uncorrected astigmatic power (p<0.05). Driving simulator performance was also unaffected by uncorrected astigmatism (p>0.05), but subjective rating of clarity decreased with increasing uncorrected astigmatic power (p<0.001). Uncorrected astigmatism at 45? or 180? orientation resulted in a worse distance and near visual acuity, and subjective rated clarity than 90? orientation (p<0.05). CONCLUSION: Uncorrected astigmatism, even as low as 1.0DC, causes a significant burden on a patient’s vision. If left uncorrected, this could impact significantly on their independence, quality of life and wellbeing.
Resumo:
Visual detection performance (d') is usually an accelerating function of stimulus contrast, which could imply a smooth, threshold-like nonlinearity in the sensory response. Alternatively, Pelli (1985 Journal of the Optical Society of America A 2 1508 - 1532) developed the 'uncertainty model' in which responses were linear with contrast, but the observer was uncertain about which of many noisy channels contained the signal. Such internal uncertainty effectively adds noise to weak signals, and predicts the nonlinear psychometric function. We re-examined these ideas by plotting psychometric functions (as z-scores) for two observers (SAW, PRM) with high precision. The task was to detect a single, vertical, blurred line at the fixation point, or identify its polarity (light vs dark). Detection of a known polarity was nearly linear for SAW but very nonlinear for PRM. Randomly interleaving light and dark trials reduced performance and rendered it non-linear for SAW, but had little effect for PRM. This occurred for both single-interval and 2AFC procedures. The whole pattern of results was well predicted by our Monte Carlo simulation of Pelli's model, with only two free parameters. SAW (highly practised) had very low uncertainty. PRM (with little prior practice) had much greater uncertainty, resulting in lower contrast sensitivity, nonlinear performance, and no effect of external (polarity) uncertainty. For SAW, identification was about v2 better than detection, implying statistically independent channels for stimuli of opposite polarity, rather than an opponent (light - dark) channel. These findings strongly suggest that noise and uncertainty, rather than sensory nonlinearity, limit visual detection.
Resumo:
To make vision possible, the visual nervous system must represent the most informative features in the light pattern captured by the eye. Here we use Gaussian scale-space theory to derive a multiscale model for edge analysis and we test it in perceptual experiments. At all scales there are two stages of spatial filtering. An odd-symmetric, Gaussian first derivative filter provides the input to a Gaussian second derivative filter. Crucially, the output at each stage is half-wave rectified before feeding forward to the next. This creates nonlinear channels selectively responsive to one edge polarity while suppressing spurious or "phantom" edges. The two stages have properties analogous to simple and complex cells in the visual cortex. Edges are found as peaks in a scale-space response map that is the output of the second stage. The position and scale of the peak response identify the location and blur of the edge. The model predicts remarkably accurately our results on human perception of edge location and blur for a wide range of luminance profiles, including the surprising finding that blurred edges look sharper when their length is made shorter. The model enhances our understanding of early vision by integrating computational, physiological, and psychophysical approaches. © ARVO.