7 resultados para full implementation
em Aston University Research Archive
Resumo:
Overlaying maps using a desktop GIS is often the first step of a multivariate spatial analysis. The potential of this operation has increased considerably as data sources and Web services to manipulate them are becoming widely available via the Internet. Standards from the OGC enable such geospatial mashups to be seamless and user driven, involving discovery of thematic data. The user is naturally inclined to look for spatial clusters and correlation of outcomes. Using classical cluster detection scan methods to identify multivariate associations can be problematic in this context, because of a lack of control on or knowledge about background populations. For public health and epidemiological mapping, this limiting factor can be critical but often the focus is on spatial identification of risk factors associated with health or clinical status. Spatial entropy index HSu for the ScankOO analysis of the hypothetical dataset using a vicinity which is fixed by the number of points without distinction between their labels. (The size of the labels is proportional to the inverse of the index) In this article we point out that this association itself can ensure some control on underlying populations, and develop an exploratory scan statistic framework for multivariate associations. Inference using statistical map methodologies can be used to test the clustered associations. The approach is illustrated with a hypothetical data example and an epidemiological study on community MRSA. Scenarios of potential use for online mashups are introduced but full implementation is left for further research.
Resumo:
Overlaying maps using a desktop GIS is often the first step of a multivariate spatial analysis. The potential of this operation has increased considerably as data sources an dWeb services to manipulate them are becoming widely available via the Internet. Standards from the OGC enable such geospatial ‘mashups’ to be seamless and user driven, involving discovery of thematic data. The user is naturally inclined to look for spatial clusters and ‘correlation’ of outcomes. Using classical cluster detection scan methods to identify multivariate associations can be problematic in this context, because of a lack of control on or knowledge about background populations. For public health and epidemiological mapping, this limiting factor can be critical but often the focus is on spatial identification of risk factors associated with health or clinical status. In this article we point out that this association itself can ensure some control on underlying populations, and develop an exploratory scan statistic framework for multivariate associations. Inference using statistical map methodologies can be used to test the clustered associations. The approach is illustrated with a hypothetical data example and an epidemiological study on community MRSA. Scenarios of potential use for online mashups are introduced but full implementation is left for further research.
Resumo:
Despite the difficulties that we have regarding the use of English in tertiary education in Turkey, we argue that it is necessary for those involved to study in the medium of English. Furthermore, significant advances have been made on this front. These efforts have been for the most part language-oriented, but also include research into needs analysis and the pedagogy of team-teaching. Considering the current situation at this level of education, however, there still seems to be more to do. And the question is, what more can we do? What further contribution can we make? Or, how can we take this process further? The purpose of the study reported here is to respond to this last question. We test the proposition that it is possible to take this process further by investigating the efficient management of transition from Turkish-medium to English-medium at the tertiary level of education in Turkey. Beyond what is achieved by only the language orientation of the EAP approach, and moving conceptually deeper than what has been achieved by the team-teaching approach, the research undertaken for the purpose of this study focuses on the idea of the discourse community that people want to belong to. It then pursues an adaptation of the essentially psycho-social approach of apprenticeship, as people become aspirants and apprentices to that discourse community. In this thesis, the researcher recognises that she cannot follow all the way through to the full implementation of her ideas in a fully-taught course. She is not in a position to change the education system. What she does here is to introduce a concept and sample its effects in terms of motivation, and thereby of integration and of success, for individuals and groups of learners. Evaluation is provided by acquiring both qualitative and quantitative data concerning mature members' perceptions of apprenticed-neophytes functioning as members in the new community, apprenticed-neophytes' perceptions of their own membership and of the preparation process undertaken, and the comparison of these neophytes' performance with that of other neophytes in the community. The data obtained provide strong evidence in support of the potential usefulness of this apprenticeship model towards the declared purpose of improving the English-medium tertiary education of Turkish students in their chosen fields of study.
Resumo:
Modern injection-moulding machinery which produces several, pairs of plastic footwear at a time brought increased production planning problems to a factory. The demand for its footwear is seasonal but the company's manning policy keeps a fairly constant production level thus determining the aggregate stock. Production planning must therefore be done within the limitations of a specified total stock. The thesis proposes a new production planning system with four subsystems. These are sales forecasting, resource planning, and two levels of production scheduling: (a) aggregate decisions concerning the 'manufacturing group' (group of products) to be produced in each machine each week, and (b) detailed decisions concerning the products within a manufacturing group to be scheduled into each mould-place. The detailed scheduling is least dependent on improvements elsewhere so the sub-systems were tackled in reverse order. The thesis concentrates on the production scheduling sub-systems which will provide most. of the benefits. The aggregate scheduling solution depends principally on the aggregate stocks of each manufacturing group and their division into 'safety stocks' (to prevent shortages) and 'freestocks' (to permit batch production). The problem is too complex for exact solution but a good heuristic solution, which has yet to be implemented, is provided by minimising graphically immediate plus expected future costs. The detailed problem splits into determining the optimal safety stocks and batch quantities given the appropriate aggregate stocks. It.is found that the optimal safety stocks are proportional to the demand. The ideal batch quantities are based on a modified, formula for the Economic Batch Quantity and the product schedule is created week by week using a priority system which schedules to minimise expected future costs. This algorithm performs almost optimally. The detailed scheduling solution was implemented and achieved the target savings for the whole project in favourable circumstances. Future plans include full implementation.
Resumo:
Warehouse is an essential component in the supply chain, linking the chain partners and providing them with functions of product storage, inbound and outbound operations along with value-added processes. Allocation of warehouse resources should be efficient and effective to achieve optimum productivity and reduce operational costs. Radio frequency identification (RFID) is a technology capable of providing real-time information about supply chain operations. It has been used by warehousing and logistic enterprises to achieve reduced shrinkage, improved material handling and tracking as well as increased accuracy of data collection. However, both academics and practitioners express concerns about challenges to RFID adoption in the supply chain. This paper provides a comprehensive analysis of the problems encountered in RFID implementation at warehouses, discussing the theoretical and practical adoption barriers and causes of not achieving full potential of the technology. Lack of foreseeable return on investment (ROI) and high costs are the most commonly reported obstacles. Variety of standards and radio wave frequencies are identified as source of concern for decision makers. Inaccurate performance of the RFID within the warehouse environment is examined. Description of integration challenges between warehouse management system and RFID technology is given. The paper discusses the existing solutions to technological, investment and performance RFID adoption barriers. Factors to consider when implementing the RFID technology are given to help alleviate implementation problems. By illustrating the challenges of RFID in the warehouse environment and discussing possible solutions the paper aims to help both academics and practitioners to focus on key areas constituting an obstacle to the technology growth. As more studies will address these challenges, the realisation of RFID benefits for warehouses and supply chain will become a reality.
Resumo:
We numerically investigate the combination of full-field detection and feed-forward equalizer (FFE) for adaptive chromatic dispersion compensation up to 2160 km in a 10 Gbit/s on-off keyed optical transmission system. The technique, with respect to earlier reports, incorporates several important implementation modules, including the algorithm for adaptive equalization of the gain imbalance between the two receiver chains, compensation of phase misalignment of the asymmetric Mach-Zehnder interferometer, and simplified implementation of field calculation. We also show that in addition to enabling fast adaptation and simplification of field calculation, full-field FFE exhibits enhanced tolerance to the sampling phase misalignment and reduced sampling rate when compared to the full-field implementation using a dispersive transmission line.
Resumo:
We numerically investigate the combination of full-field detection and feed-forward equalizer (FFE) for adaptive chromatic dispersion compensation up to 2160 km in a 10 Gbit/s on-off keyed optical transmission system. The technique, with respect to earlier reports, incorporates several important implementation modules, including the algorithm for adaptive equalization of the gain imbalance between the two receiver chains, compensation of phase misalignment of the asymmetric Mach-Zehnder interferometer, and simplified implementation of field calculation. We also show that in addition to enabling fast adaptation and simplification of field calculation, full-field FFE exhibits enhanced tolerance to the sampling phase misalignment and reduced sampling rate when compared to the full-field implementation using a dispersive transmission line.