16 resultados para automated full waveform logging system
em Aston University Research Archive
Resumo:
As the world's synchrotrons and X-FELs endeavour to meet the need to analyse ever-smaller protein crystals, there grows a requirement for a new technique to present nano-dimensional samples to the beam for X-ray diffraction experiments.The work presented here details developmental work to reconfigure the nano tweezer technology developed by Optofluidics (PA, USA) for the trapping of nano dimensional protein crystals for X-ray crystallography experiments. The system in its standard configuration is used to trap nano particles for optical microscopy. It uses silicon nitride laser waveguides that bridge a micro fluidic channel. These waveguides contain 180 nm apertures of enabling the system to use biologically compatible 1.6 micron wavelength laser light to trap nano dimensional biological samples. Using conventional laser tweezers, the wavelength required to trap such nano dimensional samples would destroy them. The system in its optical configuration has trapped protein molecules as small as 10 nanometres.
Resumo:
As the world's synchrotrons and X-FELs endeavour to meet the need to analyse ever-smaller protein crystals, there grows a requirement for a new technique to present nano-dimensional samples to the beam for X-ray diffraction experiments.The work presented here details developmental work to reconfigure the nano tweezer technology developed by Optofluidics (PA, USA) for the trapping of nano dimensional protein crystals for X-ray crystallography experiments. The system in its standard configuration is used to trap nano particles for optical microscopy. It uses silicon nitride laser waveguides that bridge a micro fluidic channel. These waveguides contain 180 nm apertures of enabling the system to use biologically compatible 1.6 micron wavelength laser light to trap nano dimensional biological samples. Using conventional laser tweezers, the wavelength required to trap such nano dimensional samples would destroy them. The system in its optical configuration has trapped protein molecules as small as 10 nanometres.
Resumo:
The work describes the programme of activities relating to a mechanical study of the Conform extrusion process. The main objective was to provide a basic understanding of the mechanics of the Conform process with particular emphasis placed on modelling using experimental and theoretical considerations. The experimental equipment used includes a state of the art computer-aided data-logging system and high temperature loadcells (up to 260oC) manufactured from tungsten carbide. Full details of the experimental equipment is presented in sections 3 and 4. A theoretical model is given in Section 5. The model presented is based on the upper bound theorem using a variation of the existing extrusion theories combined with temperature changes in the feed metal across the deformation zone. In addition, constitutive equations used in the model have been generated from existing experimental data. Theoretical and experimental data are presented in tabular form in Section 6. The discussion of results includes a comprehensive graphical presentation of the experimental and theoretical data. The main findings are: (i) the establishment of stress/strain relationships and an energy balance in order to study the factors affecting redundant work, and hence a model suitable for design purposes; (ii) optimisation of the process, by determination of the extrusion pressure for the range of reduction and changes in the extrusion chamber geometry at lower wheel speeds; and (iii) an understanding of the control of the peak temperature reach during extrusion.
Resumo:
It is known that distillation tray efficiency depends on the liquid flow pattern, particularly for large diameter trays. Scale·up failures due to liquid channelling have occurred, and it is known that fitting flow control devices to trays sometirr.es improves tray efficiency. Several theoretical models which explain these observations have been published. Further progress in understanding is at present blocked by lack of experimental measurements of the pattern of liquid concentration over the tray. Flow pattern effects are expected to be significant only on commercial size trays of a large diameter and the lack of data is a result of the costs, risks and difficulty of making these measurements on full scale production columns. This work presents a new experiment which simulates distillation by water cooling. and provides a means of testing commercial size trays in the laboratory. Hot water is fed on to the tray and cooled by air forced through the perforations. The analogy between heat and mass transfer shows that the water temperature at any point is analogous to liquid concentration and the enthalpy of the air is analogous to vapour concentration. The effect of the liquid flow pattern on mass transfer is revealed by the temperature field on the tray. The experiment was implemented and evaluated in a column of 1.2 m. dia. The water temperatures were measured by thennocouples interfaced to an electronic computerised data logging system. The "best surface" through the experimental temperature measurements was obtained by the mathematical technique of B. splines, and presented in tenos of lines of constant temperature. The results revealed that in general liquid channelling is more imponant in the bubbly "mixed" regime than in the spray regime. However, it was observed that severe channelling also occurred for intense spray at incipient flood conditions. This is an unexpected result. A computer program was written to calculate point efficiency as well as tray efficiency, and the results were compared with distillation efficiencies for similar loadings. The theoretical model of Porter and Lockett for predicting distillation was modified to predict water cooling and the theoretical predictions were shown to be similar to the experimental temperature profiles. A comparison of the repeatability of the experiments with an errors analysis revealed that accurate tray efficiency measurements require temperature measurements to better than ± 0.1 °c which is achievable with conventional techniques. This was not achieved in this work, and resulted in considerable scatter in the efficiency results. Nevertheless it is concluded that the new experiment is a valuable tool for investigating the effect of the liquid flow pattern on tray mass transfer.
Resumo:
This paper investigates how existing software engineering techniques can be employed, adapted and integrated for the development of systems of systems. Starting from existing system-of-systems (SoS) studies, we identify computing paradigms and techniques that have the potential to help address the challenges associated with SoS development, and propose an SoS development framework that combines these techniques in a novel way. This framework addresses the development of a class of IT systems of systems characterised by high variability in the types of interactions between their component systems, and by relatively small numbers of such interactions. We describe how the framework supports the dynamic, automated generation of the system interfaces required to achieve these interactions, and present a case study illustrating the development of a data-centre SoS using the new framework.
Resumo:
Liquid-liquid extraction has long been known as a unit operation that plays an important role in industry. This process is well known for its complexity and sensitivity to operation conditions. This thesis presents an attempt to explore the dynamics and control of this process using a systematic approach and state of the art control system design techniques. The process was studied first experimentally under carefully selected. operation conditions, which resembles the ranges employed practically under stable and efficient conditions. Data were collected at steady state conditions using adequate sampling techniques for the dispersed and continuous phases as well as during the transients of the column with the aid of a computer-based online data logging system and online concentration analysis. A stagewise single stage backflow model was improved to mimic the dynamic operation of the column. The developed model accounts for the variation in hydrodynamics, mass transfer, and physical properties throughout the length of the column. End effects were treated by addition of stages at the column entrances. Two parameters were incorporated in the model namely; mass transfer weight factor to correct for the assumption of no mass transfer in the. settling zones at each stage and the backmixing coefficients to handle the axial dispersion phenomena encountered in the course of column operation. The parameters were estimated by minimizing the differences between the experimental and the model predicted concentration profiles at steady state conditions using non-linear optimisation technique. The estimated values were then correlated as functions of operating parameters and were incorporated in·the model equations. The model equations comprise a stiff differential~algebraic system. This system was solved using the GEAR ODE solver. The calculated concentration profiles were compared to those experimentally measured. A very good agreement of the two profiles was achieved within a percent relative error of ±2.S%. The developed rigorous dynamic model of the extraction column was used to derive linear time-invariant reduced-order models that relate the input variables (agitator speed, solvent feed flowrate and concentration, feed concentration and flowrate) to the output variables (raffinate concentration and extract concentration) using the asymptotic method of system identification. The reduced-order models were shown to be accurate in capturing the dynamic behaviour of the process with a maximum modelling prediction error of I %. The simplicity and accuracy of the derived reduced-order models allow for control system design and analysis of such complicated processes. The extraction column is a typical multivariable process with agitator speed and solvent feed flowrate considered as manipulative variables; raffinate concentration and extract concentration as controlled variables and the feeds concentration and feed flowrate as disturbance variables. The control system design of the extraction process was tackled as multi-loop decentralised SISO (Single Input Single Output) as well as centralised MIMO (Multi-Input Multi-Output) system using both conventional and model-based control techniques such as IMC (Internal Model Control) and MPC (Model Predictive Control). Control performance of each control scheme was. studied in terms of stability, speed of response, sensitivity to modelling errors (robustness), setpoint tracking capabilities and load rejection. For decentralised control, multiple loops were assigned to pair.each manipulated variable with each controlled variable according to the interaction analysis and other pairing criteria such as relative gain array (RGA), singular value analysis (SVD). Loops namely Rotor speed-Raffinate concentration and Solvent flowrate Extract concentration showed weak interaction. Multivariable MPC has shown more effective performance compared to other conventional techniques since it accounts for loops interaction, time delays, and input-output variables constraints.
Resumo:
The objective of this study was to design, construct, commission and operate a laboratory scale gasifier system that could be used to investigate the parameters that influence the gasification process. The gasifier is of the open-core variety and is fabricated from 7.5 cm bore quartz glass tubing. Gas cleaning is by a centrifugal contacting scrubber, with the product gas being flared. The system employs an on-line dedicated gas analysis system, monitoring the levels of H2, CO, CO2 and CH4 in the product gas. The gas composition data, as well as the gas flowrate, temperatures throughout the system and pressure data is recorded using a BBC microcomputer based data-logging system. Ten runs have been performed using the system of which six were predominantly commissioning runs. The main emphasis in the commissioning runs was placed on the gas clean-up, the product gas cleaning and the reactor bed temperature measurement. The reaction was observed to occur in a narrow band, of about 3 to 5 particle diameters thick. Initially the fuel was pyrolysed, with the volatiles produced being combusted and providing the energy to drive the process, and then the char product was gasified by reaction with the pyrolysis gases. Normally, the gasifier is operated with reaction zone supported on a bed of char, although it has been operated for short periods without a char bed. At steady state the depth of char remains constant, but by adjusting the air inlet rate it has been shown that the depth of char can be increased or decreased. It has been shown that increasing the depth of the char bed effects some improvement in the product gas quality.
Resumo:
A mathematical model has been developed for predicting the spectral distribution of solar radiation incident on a horizontal surface. The solar spectrum in the wavelength range 0.29 to 4.0 micrometers has been divided in 144 intervals. Two variables in the model are the atmospheric water vapour content and atmospheric turbidity. After allowing for absorption and scattering in the atmosphere, the spectral intensity of direct and diffuse components of radiation are computed. When the predicted radiation levels are compared with the measured values for the total radiation and the values with glass filters RG715, RG630 and OG530, a close agreement (± 5%) has been achieved under clear sky conditions. A solar radiation measuring facility, close to the centre of Birmingham, has been set up utilising a microcomputer based data logging system. A suite of computer programs in the BASIC programming language has been developed and extensively tested for solar radiation data, logging, analysis and plotting. Two commonly used instruments, the Eppley PSP pyranometer and the Kipp and Zonen CM5 pyranometer, have been compared under different experimental conditions. Three models for computing the inclined plane irradiation, using total and diffuse radiation on a horizontal surface, have been tested for Birmingham. The anisotropic-alI-sky model, proposed by Klucher, provides a good agreement between the measured and the predicted radiation levels. Measurements of solar spectral distribution, using glass filters, are also reported for a number of inclines facing South.
Resumo:
A method of accurately controlling the position of a mobile robot using an external large volume metrology (LVM) instrument is presented in this article. By utilising an LVM instrument such as a laser tracker or indoor GPS (iGPS) in mobile robot navigation, many of the most difficult problems in mobile robot navigation can be simplified or avoided. Using the real-time position information from the laser tracker, a very simple navigation algorithm, and a low cost robot, 5mm repeatability was achieved over a volume of 30m radius. A surface digitisation scan of a wind turbine blade section was also demonstrated, illustrating possible applications of the method for manufacturing processes. Further, iGPS guidance of a small KUKA omni-directional robot has been demonstrated, and a full scale prototype system is being developed in cooperation with KUKA Robotics, UK. © 2011 Taylor & Francis.
Resumo:
Wireless Sensor Network (WSN) systems have become more and more popular in our modern life. They have been widely used in many areas, such as smart homes/buildings, context-aware devices, military applications, etc. Despite the increasing usage, there is a lack of formal description and automated verification for WSN system design. In this paper, we present an approach to support the rigorous verification of WSN modeling using the Semantic Web technology We use Web Ontology Language (OWL) and Semantic Web Rule Language (SWRL) to define a meta-ontology for the modeling of WSN systems. Furthermore, we apply ontology reasoners to perform automated verification on customized WSN models and their instances. We demonstrate and evaluate our approach through a Light Control System (LCS) as the case study.
Resumo:
While the retrieval of existing designs to prevent unnecessary duplication of parts is a recognised strategy in the control of design costs the available techniques to achieve this, even in product data management systems, are limited in performance or require large resources. A novel system has been developed based on a new version of an existing coding system (CAMAC) that allows automatic coding of engineering drawings and their subsequent retrieval using a drawing of the desired component as the input. The ability to find designs using a detail drawing rather than textual descriptions is a significant achievement in itself. Previous testing of the system has demonstrated this capability but if a means could be found to find parts from a simple sketch then its practical application would be much more effective. This paper describes the development and testing of such a search capability using a database of over 3000 engineering components.
Resumo:
We numerically investigate the combination of full-field detection and feed-forward equalizer (FFE) for adaptive chromatic dispersion compensation up to 2160 km in a 10 Gbit/s on-off keyed optical transmission system. The technique, with respect to earlier reports, incorporates several important implementation modules, including the algorithm for adaptive equalization of the gain imbalance between the two receiver chains, compensation of phase misalignment of the asymmetric Mach-Zehnder interferometer, and simplified implementation of field calculation. We also show that in addition to enabling fast adaptation and simplification of field calculation, full-field FFE exhibits enhanced tolerance to the sampling phase misalignment and reduced sampling rate when compared to the full-field implementation using a dispersive transmission line.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
In this paper, we experimentally demonstrate the seamless integration of full duplex system frequency division duplex (FDD) long-term evolution (LTE) technology with radio over fiber (RoF) for eNodeB (eNB) coverage extension. LTE is composed of quadrature phase-shift keying (QPSK), 16-quadrature amplitude modulation (16-QAM) and 64-QAM, modulated onto orthogonal frequency division multiplexing (OFDM) and single-carrier-frequency division multiplexing for downlink (DL) and uplink (UL) transmissions, respectively. The RoF system is composed of dedicated directly modulated lasers for DL and UL with dense wavelength division multiplexing (DWDM) for instantaneous connections and for Rayleigh backscattering and nonlinear interference mitigation. DL and UL signals have varying carrier frequencies and are categorized as broad frequency spacing (BFS), intermediate frequency spacing (IFS), and narrow frequency spacing (NFS). The adjacent channel leakage ratio (ACLR) for DL and UL with 64-QAM are similar for all frequency spacings while cross talk is observed for NFS. For the best case scenario for DL and UL transmissions we achieve error vector magnitude (EVM) values of ~2.30%, ~2.33%, and ~2.39% for QPSK, 16-QAM, and 64-QAM, respectively, while for the worst case scenario with a NFS EVM is increased by 0.40% for all schemes. © 2009-2012 OSA.