5 resultados para anti-microbial

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of N1-benzylideneheteroarylcarboxamidrazones was prepared in an automated fashion, and tested against Mycobacterium fortuitum in a rapid screen for antimycobacterial activity. Many of the compounds from this series were also tested against Mycobacterium tuberculosis, and the usefulness as M.fortuitum as a rapid, initial screen for anti-tubercular activity evaluated. Various deletions were made to the N1-benzylideneheteroarylcarboxamidrazone structure in order to establish the minimum structural requirements for activity. The N1-benzylideneheteroarylcarbox-amidrazones were then subjected to molecular modelling studies and their activities against M.fortuitum and M.tuberculosis were analysed using quantitative structure-analysis relationship (QSAR) techniques in the computational package TSAR (Oxford Molecular Ltd.). A set of equations predictive of antimycobacterial activity was hereby obtained. The series of N1-benzylidenehetero-arylcarboxamidrazones was also tested against a multidrug-resistant strain of Staphylococcus aureus (MRSA), followed by a panel of Gram-positive and Gram-negative bacteria, if activity was observed for MRSA. A set of antimycobacterial N1-benzylideneheteroarylcarboxamidrazones was hereby discovered, the best of which had MICs against m. fortuitum in the range 4-8μgml-1 and displayed 94% inhibition of M.tuberculosis at a concentration of 6.25μgml-1. The antimycobacterial activity of these compounds appeared to be specific, since the same compounds were shown to be inactive against other classes of organisms. Compounds which were found to be sufficiently active in any screen were also tested for their toxicity against human mononuclear leucocytes. Polyethylene glycol (PEG) was used as a soluble polymeric support for the synthesis of some fatty acid derivatives, containing an isoxazoline group, which may inhibit mycolic acid synthesis in mycobacteria. Both the PEG-bound products and the cleaved, isolated products themselves were tested against M.fortuitum and some low levels of antimycobacterial activity were observed, which may serve as lead compounds for further studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this thesis falls into three main categories: The design and synthesis of potential anti-tuberculosis drugs targeting a mycobacterial esterase and the enzyme dUTPase; synthesis and anti-microbial SAR studies on a set of carboxamidrazones; synthesis and anti-microbial SAR studies on a set of thiosem icarbazones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Central venous catheters have become an integral part of patient management however they are associated with many complications including infection. Despite efforts being made to reduce the incidence of such infect ions the problem continues to increase and has resource implications for the Health Service. Studies relating to the source of microorganisms causing CVC-associated infection, the cost of such infections and the efficacy of an antimicrobial catheter have been undertaken. Thirty patients who required a CVC as part of their medical management and underwent cardiac surgery had the distal tips of their catheters sampled whilst in situ. Sampling took place within 1 h of catheter placement. Bacteria were isolated from 16% of the catheter distal tips sampled in situ. The guidewires used to insert the devices were also contaminated (50%). When CVC were inserted via a protective sheath, avoiding contact with the skin. the incidence of microbial contamination was reduced. These findings suggest that despite rigorous skin disinfection and strict aseptic technique, viable microorganisms are impacted onto the distal tip of CVC during the insertion procedure. Needleless intravascular access devices have been introduced in order to reduce the incidence of need1estick injury. However, it was unclear whether such connectors would act as a portal of entry for microorganisms to CVC. The efficacy of these devices was investigated. Within the controlled laboratory environment it was demonstrated that needleless devices, when challenged with microorganisms, did not allow the passage of microbes when flu id was injected. This therefore suggested that the devices should not increase the risk of catheter colonisation. When used in clinical practice however microbial contamination of the needleless connectors was 55 % in comparison to the routinely used luer connectors (23%). The cost of infections associated with CVC was determined. Twenty patients catheterised with a CVC designed for long term use who were admitted to hospital with a presumptive diagnosis of catheter-related infection were studied. The treatment given specifically for this infection was costed. The mean cost of such an infection was £ 1781.81. Throughout the UK this may amount to £1.565.906 per annum. The cost of infections associated with CVC designed for short term use was estimated to be between 5 and 7 million pounds per annum in the UK. In an attempt to reduce both the incidence and cost of catheter- related infection antimicrobial CVC have been developed. The efficacy of a novel polyurethane CVC impregnated on both the internal and external catheter surface with the quaternary ammonium compound benzalkonium chloride was investigated. Eighty eight patients received an antimicrobial catheter and 78 patients a conventional polyurethane CVC. The anti-microbial CVC resulted in a reduction in microbial colonisation of the external and internal polymer surfaces as compared to the control device. The observed reduction in microbial colonisation with the anti-microbial CVC may decrease the likelihood of subsequent infection offering a useful approach to the prevention of catheter-related infections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The amphibian antimicrobial peptide pseudin-2 is a peptide derived from the skin of the South-American frog Pseudis paradoxa (Olson et al., 2001). This peptide possesses tremendous potential as a therapeutic lead since it has been shown to possess both antimicrobial as well insulin-releasing properties (Olson et al., 2001; Abdel-Wahab et al., 2008). This study aimed to develop pseudin-2’s potential by understanding and improving its properties as an antimicrobial agent. The structure-function relationships of pseudin-2 were explored using a combination of in-vitro and in-silico techniques, with an aim to predict how the structure of the peptide may be altered in order to improve its efficacy. A library of pseudin-2 mutants was generated by randomizing codons at positions 10, 14 and 18 of a synthetic gene, using NNK saturation mutagenesis. Analysis of these novel peptides broadly confirmed, in line with literature precedent, that anti-microbial activity increases with increased positive charge. Specifically, 2 positively-charged residues at positions 10 and 14 and a hydrophobic at position 18 are preferred. However, substitution at position 14 with some polar, non-charged residues also created peptides with antimicrobial activity. Interestingly, the pseudin-2 analogue [10-E, 14-Q, 18-L] which is identical to pseudin-2, except that the residues at positions 10 and 14 are switched, showed no anti-microbial activity at all. Molecular dynamics simulations of pseudin-2 showed that the peptide possesses two equilibrium structures in a membrane environment: a linear and a kinked a-helix which both embed into the membrane at an angle. Biophysical characterization using circular dichroism spectroscopy confirmed that the peptide is helical within the membrane environment whilst linear dichroism established that the peptide has no defined orientation within the membrane. Collectively, these data indicate that Pseudin-2 exerts its antimicrobial activity via the carpet model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The NADPH oxidase family of enzymes has emerged as a major source of reactive oxygen species (ROS) that is important in diverse cellular functions including anti-microbial defence, inflammation and redox signaling. Of the five known NADPH oxidase isoforms, several are expressed in cardiovascular cells where they are involved in physiological and pathological processes such as the regulation of vascular tone, cell growth, migration, proliferation, hypertrophy, apoptosis and matrix deposition. This article reviews current knowledge regarding the role of NADPH oxidases in cardiomyocyte function in health and disease. © 2009 Elsevier Inc. All rights reserved.