15 resultados para analytical solution
em Aston University Research Archive
Resumo:
The spreading time of liquid binder droplet on the surface a primary particle is analyzed for Fluidized Bed Melt Granulation (FBMG). As discussed in the first paper of this series (Chua et al., in press) the droplet spreading rate has been identified as one of the important parameters affecting the probability of particles aggregation in FBMG. In this paper, the binder droplet spreading time has been estimated using Computational Fluid Dynamic modeling (CFD) based on Volume of Fluid approach (VOF). A simplified analytical solution has been developed and tested to explore its validity for predicting the spreading time. For the purpose of models validation, the droplet spreading evolution was recorded using a high speed video camera. Based on the validated model, a generalized correlative equation for binder spreading time is proposed. For the operating conditions considered here, the spreading time for Polyethylene Glycol (PEG1500) binder was found to fall within the range of 10-2 to 10-5 s. The study also included a number of other common binders used in FBMG. The results obtained here will be further used in paper III, where the binder solidification rate is discussed.
Resumo:
In series I and II of this study ([Chua et al., 2010a] and [Chua et al., 2010b]), we discussed the time scale of granule–granule collision, droplet–granule collision and droplet spreading in Fluidized Bed Melt Granulation (FBMG). In this third one, we consider the rate at which binder solidifies. Simple analytical solution, based on classical formulation for conduction across a semi-infinite slab, was used to obtain a generalized equation for binder solidification time. A multi-physics simulation package (Comsol) was used to predict the binder solidification time for various operating conditions usually considered in FBMG. The simulation results were validated with experimental temperature data obtained with a high speed infrared camera during solidification of ‘macroscopic’ (mm scale) droplets. For the range of microscopic droplet size and operating conditions considered for a FBMG process, the binder solidification time was found to fall approximately between 10-3 and 10-1 s. This is the slowest compared to the other three major FBMG microscopic events discussed in this series (granule–granule collision, granule–droplet collision and droplet spreading).
Resumo:
The influence of optical activity on two-wave mixing (TWM) in photorefractive BTO and BSO crystals in the absence of an applied field is studied both theoretically and experimentally. For the conventinal orientations of the grating vector, K [001] and K[001], the piezoelectric and photoelastic effects are either zero or negligible. This makes an analytical treatment of the TWM problem possible. We obtain an analytical solution for the coupled wave equations of TWM valid for arbitrary optical activity. This result is of special importance for BTO crystals. In these crystals under the condition of maximum energy transfer (|K|rD=1, where rD is the Debye radius) neither the approximation of small optical activity nor the one of dominating optical activity is applicable and our analytical solution becomes essential. Our experimental setup uses beams with a trapezoidal overlap that allows us to study the thickness-dependence of the gain in a single measurement. Experimental and theoretical results for a BTO crystal are compared with those for a BSO crystal and are explained in the framework of the model used.
Resumo:
This paper investigates the vibration characteristics of the coupling system of a microscale fluid-loaded rectangular isotropic plate attached to a uniformly distributed mass. Previous literature has, respectively, studied the changes in the plate vibration induced by an acoustic field or by the attached mass loading. This paper investigates the issue of involving these two types of loading simultaneously. Based on Lamb's assumption of the fluid-loaded structure and the Rayleigh–Ritz energy method, this paper presents an analytical solution for the natural frequencies and mode shapes of the coupling system. Numerical results for microplates with different types of boundary conditions have also been obtained and compared with experimental and numerical results from previous literature. The theoretical model and novel analytical solution are of particular interest in the design of microplate-based biosensing devices.
Resumo:
The thesis presents a theoretical and practical study of the dynamic behaviour of electromagnetic relays. After discussing the problem of solving the dynamicc equations analytically and presenting a historical survey of the earlier works in the relay and its dynamics, the simulation of a relay on the analogue computer is discussed. It is shown that the simulation may be used to obtain specific solutions to the dynamic equations. The computer analysis provides the dynamic characteristics for design purposes and may be used in the study of bouncing, rebound oscillations and stability of the armature motion. An approximate analytical solution to the two dynamic equations is given based on the assumption that the dynamic variation of the pull with the position of the armature is linear. The assumption is supported by the Computer-aided analysis and experimental results. The solution is intended to provide a basis for a rational design. A rigorous method of analysing the dynamic performance by using Ahlberg's theory is also presented. This method may be justified to be the extension of Ahlberg's theory by taking the mass and frictional damping forces into account. While calculating the armature motion mathematically, Ahlberg considers the equilibrium of two kinds of forces, namely pull and load, and disregards the mass and friction forces, whereas the present method deals with the equilibrium of all four kinds of forces. It is shown how this can be utilised to calculate the dynamic characteristics for a specific design. The utility of this method also extends to the study of stability, contact bounce and armature rebound. The magnetic circuit and other related topics which are essential to the study of relay dynamics are discussed and some necessary experimental results are given.
Resumo:
The influence of optical activity on two-wave mixing (TWM) in photorefractive BTO and BSO crystals in the absence of an applied field is studied both theoretically and experimentally. For the conventinal orientations of the grating vector, K [001] and K[001], the piezoelectric and photoelastic effects are either zero or negligible. This makes an analytical treatment of the TWM problem possible. We obtain an analytical solution for the coupled wave equations of TWM valid for arbitrary optical activity. This result is of special importance for BTO crystals. In these crystals under the condition of maximum energy transfer (|K|rD=1, where rD is the Debye radius) neither the approximation of small optical activity nor the one of dominating optical activity is applicable and our analytical solution becomes essential. Our experimental setup uses beams with a trapezoidal overlap that allows us to study the thickness-dependence of the gain in a single measurement. Experimental and theoretical results for a BTO crystal are compared with those for a BSO crystal and are explained in the framework of the model used.
Resumo:
An approach to nonlinearity management in optical transmission lines with periodic dispersion compensation and distributed Raman amplification was presented. The optimization of a three-step dispersion map with forward and backward pumped distributed amplification was examined. The optimization was performed using the analytical solution obtained under the assumption of undepleted pumps and without inclusion of double Rayleigh Scattering (DRS), and by means of a full numerical approach accounting for all important effects. It was found that both procedures led to the same final solution.
Resumo:
This work introduces a model in which agents of a network act upon one another according to three different kinds of moral decisions. These decisions are based on an increasing level of sophistication in the empathy capacity of the agent, a hierarchy which we name Piaget's ladder. The decision strategy of the agents is non-rational, in the sense they are arbitrarily fixed, and the model presents quenched disorder given by the distribution of its defining parameters. An analytical solution for this model is obtained in the large system limit as well as a leading order correction for finite-size systems which shows that typical realisations of the model develop a phase structure with both continuous and discontinuous non-thermal transitions.
Resumo:
This paper presents a theoretical model on the vibration analysis of micro scale fluid-loaded rectangular isotropic plates, based on the Lamb's assumption of fluid-structure interaction and the Rayleigh-Ritz energy method. An analytical solution for this model is proposed, which can be applied to most cases of boundary conditions. The dynamical experimental data of a series of microfabricated silicon plates are obtained using a base-excitation dynamic testing facility. The natural frequencies and mode shapes in the experimental results are in good agreement with the theoretical simulations for the lower order modes. The presented theoretical and experimental investigations on the vibration characteristics of the micro scale plates are of particular interest in the design of microplate based biosensing devices. Copyright © 2009 by ASME.
Resumo:
Purpose: The use of PHMB as a disinfectant in contact lens multipurpose solutions has been at the centre of much debate in recent times, particularly in relation to the issue of solution induced corneal staining. Clinical studies have been carried out which suggest different effects with individual contact lens materials used in combination with specific PHMB containing care regimes. There does not appear to be, however, a reliable analytical technique that would detect and quantify with any degree of accuracy the specific levels of PHMB that are taken up and released from individual solutions by the various contact lens materials. Methods: PHMB is a mixture of positively charged polymer units of varying molecular weight that has maximum absorbance wavelength of 236 nm. On the basis of these properties a range of assays including capillary electrophoresis, HPLC, a nickelnioxime colorimetric technique, mass spectrophotometry, UV spectroscopy and ion chromatography were assessed paying particular attention to each of their constraints and detection levels. Particular interest was focused on the relative advantage of contactless conductivity compared to UV and mass spectrometry detection in capillary electrophoresis (CE). This study provides an overview of the comparative performance of these techniques. Results: The UV absorbance of PHMB solutions, ranging from 0.0625 to 50 ppm was measured at 236 nm. Within this range the calibration curve appears to be linear however, absorption values below 1 ppm (0.0001%) were extremely difficult to reproduce. The concentration of PHMB in solutions is in the range of 0.0002–0.00005% and our investigations suggest that levels of PHMB below 0.0001% (levels encountered in uptake and release studies) can not be accurately estimated, in particular when analysing complex lens care solutions which can contain competitively absorbing, and thus interfering, species in the solution. The use of separative methodologies, such as CE using UV detection alone is similarly limited. Alternative techniques including contactless conductivity detection offer greater discrimination in complex solutions together with the opportunity for dual channel detection. Preliminary results achieved by TraceDec1 contactless conductivity detection, (Gain 150%, Offset 150) in conjunction with the Agilent capillary electrophoresis system using a bare fused silica capillary (extended light path, 50 mid, total length 64.5 cm, effective length 56 cm) and a cationic buffer at pH 3.2, exhibit great potential with reproducible PHMB split peaks. Conclusions: PHMB-based solutions are commonly associated with the potential to invoke corneal staining in combination with certain contact lens materials. However this terminology ‘PHMBbased solution’ is used primarily because PHMB itself has yet to be adequately implicated as the causative agent of the staining and compromised corneal cell integrity. The lack of well characterised adequately sensitive assays, coupled with the range of additional components that characterise individual care solutions pose a major barrier to the investigation of PHMB interactions in the lenswearing eye.
Resumo:
A thorough investigation of the recommended colorimetric method for the determination of malathion (an organophosphorus pesticide) has led to the identification of the major cause of all the problems with which the method suffers. The method, which involves the extraction of the copper (II) complex or the hydrolysis product of malathion from aqueous solution into immiscible organic solvents, has many drawbacks. For example, the colour of the organic extract fades very quickly and a slight increase in the contact time of the hydrolysis product and the copper reagent within the aqueous solution, results in a decrease in the ab-solute absorbance. Also, the presence of any reducing agents can be a significant source of error. In the present work, it has been shown that the basic cause of all these problems is the ability of copper (II) ion to be reduced to copper (I) ion. It has further been shown that these problems can be resolved by re-placing copper (II) by bismuth (III). This has led to the development of a modified colorimetric method for the determination. of malathion, which has distinct advantages over all other existing methods in terms of reagents required, ease in application, avoidance of interferences and stability of colour for extended periods of time. The modified colorimetric method described above has been further improved by making use of a ligand exchange reaction involving dithizone. The resulting final organic extract in this case is bright orange in colour, the absorbance of which can be measured even with simple photometers. The usefulness of the modified colorimetric method has been demonstrated by determining malathion in technical products, and in aqueous solution containing the compound down to sub ppm levels. The scope and applicability of atomic absorption spectrophotometry has been extended by demonstrating for the first time that the technique can be used for the indirect determination of malathion. Almost all of the work described above has been accepted for publication by international journals and considerable interest in the work has been shown by chemists working in the field of pesticide analysis and research.
Resumo:
A method for the exact solution of the Bragg-difrraction problem for a photorefractive grating in sillenite crystals based on Pauli matrices is proposed. For the two main optical configurations explicit analytical expressions are found for the diffraction efficiency and the polarization of the scattered wave. The exact solution is applied to a detailed analysis of a number of particular cases. For the known limiting cases there is agreement with the published results.
Resumo:
A method for the exact solution of the Bragg-difrraction problem for a photorefractive grating in sillenite crystals based on Pauli matrices is proposed. For the two main optical configurations explicit analytical expressions are found for the diffraction efficiency and the polarization of the scattered wave. The exact solution is applied to a detailed analysis of a number of particular cases. For the known limiting cases there is agreement with the published results.
Resumo:
This study re-examines the one-dimensional equilibrium model of Gibilaro and Rowe (1974) for a segregating gas fluidized bed. The model was based on volumetric jetsam concentration and divided the bed contents into bulk and wake phases, taking account of bulk and wake flux, segregation, exchange between the bulk and wake phases, and axial mixing. Due to the complex nature of the model and its unstable solution, the lack of computing power at the time prevented the authors from doing little more than the analytical solutions to specific cases of this model. This paper provides a numerical total solution and allows the effect of the respective parameters to be compared for the first time. There is also a comparison with experimental results, which showed a reasonable agreement.
Resumo:
We study the statistical and dynamical behavior of turbulent Kelvin waves propagating on quantized vortices in superfluids and address the controversy concerning the energy spectrum that is associated with these excitations. Finding the correct energy spectrum is important because Kelvin waves play a major role in the dissipation of energy in superfluid turbulence at near-zero temperatures. In this paper, we show analytically that the solution proposed by [L’vov and Nazarenko, JETP Lett. 91, 428 (2010)] enjoys existence, uniqueness, and regularity of the prefactor. Furthermore, we present numerical results of the dynamical equation that describes to leading order the nonlocal regime of the Kelvin-wave dynamics. We compare our findings with the analytical results from the proposed local and nonlocal theories for Kelvin-wave dynamics and show an agreement with the nonlocal predictions. Accordingly, the spectrum proposed by L’vov and Nazarenko should be used in future theories of quantum turbulence. Finally, for weaker wave forcing we observe an intermittent behavior of the wave spectrum with a fluctuating dissipative scale, which we interpreted as a finite-size effect characteristic of mesoscopic wave turbulence.