46 resultados para agent-based simulation
em Aston University Research Archive
Resumo:
Lock-in is observed in real world markets of experience goods; experience goods are goods whose characteristics are difficult to determine in advance, but ascertained upon consumption. We create an agent-based simulation of consumers choosing between two experience goods available in a virtual market. We model consumers in a grid representing the spatial network of the consumers. Utilising simple assumptions, including identical distributions of product experience and consumers having a degree of follower tendency, we explore the dynamics of the model through simulations. We conduct simulations to create a lock-in before testing several hypotheses upon how to break an existing lock-in; these include the effect of advertising and free give-away. Our experiments show that the key to successfully breaking a lock-in required the creation of regions in a consumer population. Regions arise due to the degree of local conformity between agents within the regions, which spread throughout the population when a mildly superior competitor was available. These regions may be likened to a niche in a market, which gains in popularity to transition into the mainstream.
Resumo:
There has been an increasing interest in the use of agent-based simulation and some discussion of the relative merits of this approach as compared to discrete-event simulation. There are differing views on whether an agent-based simulation offers capabilities that discrete-event cannot provide or whether all agent-based applications can at least in theory be undertaken using a discrete-event approach. This paper presents a simple agent-based NetLogo model and corresponding discrete-event versions implemented in the widely used ARENA software. The two versions of the discrete-event model presented use a traditional process flow approach normally adopted in discrete-event simulation software and also an agent-based approach to the model build. In addition a real-time spatial visual display facility is provided using a spreadsheet platform controlled by VBA code embedded within the ARENA model. Initial findings from this investigation are that discrete-event simulation can indeed be used to implement agent-based models and with suitable integration elements such as VBA provide the spatial displays associated with agent-based software.
Resumo:
The purpose of this research is to propose a procurement system across other disciplines and retrieved information with relevant parties so as to have a better co-ordination between supply and demand sides. This paper demonstrates how to analyze the data with an agent-based procurement system (APS) to re-engineer and improve the existing procurement process. The intelligence agents take the responsibility of searching the potential suppliers, negotiation with the short-listed suppliers and evaluating the performance of suppliers based on the selection criteria with mathematical model. Manufacturing firms and trading companies spend more than half of their sales dollar in the purchase of raw material and components. Efficient data collection with high accuracy is one of the key success factors to generate quality procurement which is to purchasing right material at right quality from right suppliers. In general, the enterprises spend a significant amount of resources on data collection and storage, but too little on facilitating data analysis and sharing. To validate the feasibility of the approach, a case study on a manufacturing small and medium-sized enterprise (SME) has been conducted. APS supports the data and information analyzing technique to facilitate the decision making such that the agent can enhance the negotiation and suppler evaluation efficiency by saving time and cost.
Resumo:
To meet changing needs of customers and to survive in the increasingly globalised and competitive environment, it is necessary for companies to equip themselves with intelligent tools, thereby enabling managerial levels to use the tactical decision in a better way. However, the implementation of an intelligent system is always a challenge in Small- and Medium-sized Enterprises (SMEs). Therefore, a new and simple approach with 'process rethinking' ability is proposed to generate ongoing process improvements over time. In this paper, a roadmap of the development of an agent-based information system is described. A case example has also been provided to show how the system can assist non-specialists, for example, managers and engineers to make right decisions for a continual process improvement. Copyright © 2006 Inderscience Enterprises Ltd.
Resumo:
From a manufacturing perspective, the efficiency of manufacturing operations (such as process planning and production scheduling) are the key element for enhancing manufacturing competence. Process planning and production scheduling functions have been traditionally treated as two separate activities, and have resulted in a range of inefficiencies. These include infeasible process plans, non-available/overloaded resources, high production costs, long production lead times, and so on. Above all, it is unlikely that the dynamic changes can be efficiently dealt with. Despite much research has been conducted to integrate process planning and production scheduling to generate optimised solutions to improve manufacturing efficiency, there is still a gap to achieve the competence required for the current global competitive market. In this research, the concept of multi-agent system (MAS) is adopted as a means to address the aforementioned gap. A MAS consists of a collection of intelligent autonomous agents able to solve complex problems. These agents possess their individual objectives and interact with each other to fulfil the global goal. This paper describes a novel use of an autonomous agent system to facilitate the integration of process planning and production scheduling functions to cope with unpredictable demands, in terms of uncertainties in product mix and demand pattern. The novelty lies with the currency-based iterative agent bidding mechanism to allow process planning and production scheduling options to be evaluated simultaneously, so as to search for an optimised, cost-effective solution. This agent based system aims to achieve manufacturing competence by means of enhancing the flexibility and agility of manufacturing enterprises.
Resumo:
Swarm intelligence is a popular paradigm for algorithm design. Frequently drawing inspiration from natural systems, it assigns simple rules to a set of agents with the aim that, through local interactions, they collectively solve some global problem. Current variants of a popular swarm based optimization algorithm, particle swarm optimization (PSO), are investigated with a focus on premature convergence. A novel variant, dispersive PSO, is proposed to address this problem and is shown to lead to increased robustness and performance compared to current PSO algorithms. A nature inspired decentralised multi-agent algorithm is proposed to solve a constrained problem of distributed task allocation. Agents must collect and process the mail batches, without global knowledge of their environment or communication between agents. New rules for specialisation are proposed and are shown to exhibit improved eciency and exibility compared to existing ones. These new rules are compared with a market based approach to agent control. The eciency (average number of tasks performed), the exibility (ability to react to changes in the environment), and the sensitivity to load (ability to cope with differing demands) are investigated in both static and dynamic environments. A hybrid algorithm combining both approaches, is shown to exhibit improved eciency and robustness. Evolutionary algorithms are employed, both to optimize parameters and to allow the various rules to evolve and compete. We also observe extinction and speciation. In order to interpret algorithm performance we analyse the causes of eciency loss, derive theoretical upper bounds for the eciency, as well as a complete theoretical description of a non-trivial case, and compare these with the experimental results. Motivated by this work we introduce agent "memory" (the possibility for agents to develop preferences for certain cities) and show that not only does it lead to emergent cooperation between agents, but also to a signicant increase in efficiency.
Resumo:
We investigate knowledge exchange among commercial organizations, the rationale behind it, and its effects on the market. Knowledge exchange is known to be beneficial for industry, but in order to explain it, authors have used high-level concepts like network effects, reputation, and trust. We attempt to formalize a plausible and elegant explanation of how and why companies adopt information exchange and why it benefits the market as a whole when this happens. This explanation is based on a multiagent model that simulates a market of software providers. Even though the model does not include any high-level concepts, information exchange naturally emerges during simulations as a successful profitable behavior. The conclusions reached by this agent-based analysis are twofold: 1) a straightforward set of assumptions is enough to give rise to exchange in a software market, and 2) knowledge exchange is shown to increase the efficiency of the market.
Resumo:
Multi-agent algorithms inspired by the division of labour in social insects and by markets, are applied to a constrained problem of distributed task allocation. The efficiency (average number of tasks performed), the flexibility (ability to react to changes in the environment), and the sensitivity to load (ability to cope with differing demands) are investigated in both static and dynamic environments. A hybrid algorithm combining both approaches, is shown to exhibit improved efficiency and robustness. We employ nature inspired particle swarm optimisation to obtain optimised parameters for all algorithms in a range of representative environments. Although results are obtained for large population sizes to avoid finite size effects, the influence of population size on the performance is also analysed. From a theoretical point of view, we analyse the causes of efficiency loss, derive theoretical upper bounds for the efficiency, and compare these with the experimental results.
Resumo:
With new and emerging e-business technologies to transform business processes, it is important to understand how those technologies will affect the performance of a business. Will the overall business process be cheaper, faster and more accurate or will a sub-optimal change have been implemented? The use of simulation to model the behaviour of business processes is well established, and it has been applied to e-business processes to understand their performance in terms of measures such as lead-time, cost and responsiveness. This paper introduces the concept of simulation components that enable simulation models of e-business processes to be built quickly from generic e-business templates. The paper demonstrates how these components were devised, as well as the results from their application through case studies.
Resumo:
In-Motes is a mobile agent middleware that generates an intelligent framework for deploying applications in Wireless Sensor Networks (WSNs). In-Motes is based on the injection of mobile agents into the network that can migrate or clone following specific rules and performing application specific tasks. By doing so, each mote is given a certain degree of perception, cognition and control, forming the basis for its intelligence. Our middleware incorporates technologies such as Linda-like tuplespaces and federated system architecture in order to obtain a high degree of collaboration and coordination for the agent society. A set of behavioral rules inspired by a community of bacterial strains is also generated as the means for robustness of the WSN. In this paper, we present In-Motes and provide a detailed evaluation of its implementation for MICA2 motes.
Resumo:
Large-scale evacuations are a recurring theme on news channels, whether in response to major natural or manmade disasters. The role of warning dissemination is a key part in the success of such large-scale evacuations and its inadequacy in certain cases has been a 'primary contribution to deaths and injuries' (Hayden et al.; 2007). Along with technology-driven 'official warning channels' (e.g. sirens, mass media), the role of unofficial channel (e.g. neighbours, personal contacts, volunteer wardens) has proven to be significant in warning the public of the need to evacuate. Although post-evacuation studies identify the behaviours of evacuees as disseminators of the warning message, there has not been a detailed study that quantifies the effects of such behaviour on the warning message dissemination. This paper develops an Agent-Based Simulation (ABS) model of multiple agents (evacuee households) in a hypothetical community to investigate the impact of behaviour as an unofficial channel on the overall warning dissemination. Parameters studied include the percentage of people who warn their neighbours, the efficiency of different official warning channels, and delay time to warn neighbours. Even with a low proportion of people willing to warn their neighbour, the results showed considerable impact on the overall warning dissemination. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Timely warning of the public during large scale emergencies is essential to ensure safety and save lives. This ongoing study proposes an agent-based simulation model to simulate the warning message dissemination among the public considering both official channels and unofficial channels The proposed model was developed in NetLogo software for a hypothetical area, and requires input parameters such as effectiveness of each official source (%), estimated time to begin informing others, estimated time to inform others and estimated percentage of people (who do not relay the message). This paper demonstrates a means of factoring the behaviour of the public as informants into estimating the effectiveness of warningdissemination during large scale emergencies. The model provides a tool for the practitioner to test the potential impact of the informal channels on the overall warning time and sensitivity of the modelling parameters. The tool would help the practitioners to persuade evacuees to disseminate the warning message informing others similar to the ’Run to thy neighbour campaign conducted by the Red cross.
Resumo:
Last mile relief distribution is the final stage of humanitarian logistics. It refers to the supply of relief items from local distribution centers to the disaster affected people (Balcik et al., 2008). In the last mile relief distribution literature, researchers have focused on the use of optimisation techniques for determining the exact optimal solution (Liberatore et al., 2014), but there is a need to include behavioural factors with those optimisation techniques in order to obtain better predictive results. This paper will explain how improving the coordination factor increases the effectiveness of the last mile relief distribution process. There are two stages of methodology used to achieve the goal: Interviews: The authors conducted interviews with the Indian Government and with South Asian NGOs to identify the critical factors for final relief distribution. After thematic and content analysis of the interviews and the reports, the authors found some behavioural factors which affect the final relief distribution. Model building: Last mile relief distribution in India follows a specific framework described in the Indian Government disaster management handbook. We modelled this framework using agent based simulation and investigated the impact of coordination on effectiveness. We define effectiveness as the speed and accuracy with which aid is delivered to affected people. We tested through simulation modelling whether coordination improves effectiveness.
Resumo:
This study investigates the critical role that opinion leaders (or influentials) play in the adoption process of new products. Recent existing reseach evidence indicates a limited effect of opinion leaders on diffusion processes, yet these studies take into account merely the network position of opinion leaders without addressing their influential power. Empirical findings of our study show that opinion leaders, in addition to having a more central network position, possess more accurate knowledge about a product and tend to be less susceptible to norms and more innovative. Experiments that address these attributes, using an agent-based model, demonstrate that opinion leaders increase the speed of the information stream and the adoption process itself. Furthermore, they increase the maximum adoption percentage. These results indicate that targeting opinion leaders remains a valuable marketing strategy.
Resumo:
Simulation is an effective method for improving supply chain performance. However, there is limited advice available to assist practitioners in selecting the most appropriate method for a given problem. Much of the advice that does exist relies on custom and practice rather than a rigorous conceptual or empirical analysis. An analysis of the different modelling techniques applied in the supply chain domain was conducted, and the three main approaches to simulation used were identified; these are System Dynamics (SD), Discrete Event Simulation (DES) and Agent Based Modelling (ABM). This research has examined these approaches in two stages. Firstly, a first principles analysis was carried out in order to challenge the received wisdom about their strengths and weaknesses and a series of propositions were developed from this initial analysis. The second stage was to use the case study approach to test these propositions and to provide further empirical evidence to support their comparison. The contributions of this research are both in terms of knowledge and practice. In terms of knowledge, this research is the first holistic cross paradigm comparison of the three main approaches in the supply chain domain. Case studies have involved building ‘back to back’ models of the same supply chain problem using SD and a discrete approach (either DES or ABM). This has led to contributions concerning the limitations of applying SD to operational problem types. SD has also been found to have risks when applied to strategic and policy problems. Discrete methods have been found to have potential for exploring strategic problem types. It has been found that discrete simulation methods can model material and information feedback successfully. Further insights have been gained into the relationship between modelling purpose and modelling approach. In terms of practice, the findings have been summarised in the form of a framework linking modelling purpose, problem characteristics and simulation approach.