14 resultados para Vischer, Peter, d. 1529.

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper argues the use of reusable simulation templates as a tool that can help to predict the effect of e-business introduction on business processes. First, a set of requirements for e-business modelling is introduced and modelling options described. Traditional business process mapping techniques are examined as a way of identifying potential changes. Whilst paper-based process mapping may not highlight significant differences between traditional and e-business processes, simulation does allow the real effects of e-business to be identified. Simulation has the advantage of capturing the dynamic characteristics of the process, thus reflecting more accurately the changes in behaviour. This paper shows the value of using generic process maps as a starting point for collecting the data that is needed to build the simulation and proposes the use of reusable templates/components for the speedier building of e-business simulation models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The promoters of the large groundwater developments implemented in the 1970's paid little attention to the effects of pumping on soil moisture. A field study, conducted in 1979 in the Tern Area of the Shropshire Groundwater Scheme, revealed that significant quantities of the available moisture could be removed from the root zone of vegetation when drawdown of shallow watertables occurred. Arguments to this effect, supported by the field study evidence, were successfully presented at the Shropshire Groundwater Scheme public inquiry. The aim of this study has been to expand the work which was undertaken in connection with the Shropshire Groundwater Scheme, and to develop a method whereby the effects of groundwater pumping on vegetation can be assessed, and hence the impacts minimised. Two concepts, the critical height and the soil sensitivity depth, formulated during the initial work are at the core of the Environmental Impact Assessment method whose development is described. A programme of laboratory experiments on soil columns is described, as is the derivation of relationships for determining critical heights and field capacity moisture profiles. These relationships are subsequently employed in evaluating the effects of groundwater drawdown. In employing the environmental assessment technique, digitised maps of relevant features of the Tern Area are combined to produce composite maps delineating the extent of the areas which are potentially sensitive to groundwater drawdown. A series of crop yield/moisture loss functions are then employed to estimate the impact of simulated pumping events on the agricultural community of the Tern Area. Finally, guidelines, based on experience gained through evaluation of the Tern Area case study, are presented for use in the design of soil moisture monitoring systems and in the siting of boreholes. In addition recommendations are made for development of the EIA technique, and further research needs are identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current rate of global biodiversity loss led many governments to sign the international agreement ‘Halting Biodiversity Loss by 2010 and beyon€™ in 2001. The UK government was one of these and has a number of methods to tackle this, such as: commissioning specific technical guidance and supporting the UK Biodiversity Acton Plan (BAP) targets. However, by far the most effective influence the government has upon current biodiversity levels is through the town planning system. This is due to the control it has over all phases of a new development scheme’s lifecycle.There is an increasing myriad of regulations, policies and legislation, which deal with biodiversity protection and enhancement across the hierarchical spectrum: from the global and European level, down to regional and local levels. With these drivers in place, coupled with the promotion of benefits and incentives, increasing biodiversity value ought to be an achievable goal on most, if not all development sites. However, in the professional world, this is not the case due to a number of obstructions. Many of these tend to be ‘process’ barriers, which are particularly prevalent with ‘urban’ and ‘major’ development schemes, and is where the focus of this research paper lies.The paper summarises and discusses the results of a questionnaire survey, regarding obstacles to maximising biodiversity enhancements on major urban development schemes. The questionnaire was completed by Local Government Ecologists in England. The paper additionally refers to insights from previous action research, specialist interviews, and case studies, to reveal the key process obstacles.Solutions to these obstacles are then alluded to and recommendations are made within the discussion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industrial development, accompanying human population growth, has had a major role in creating the situation where bio-diverse materials and services essential for sustaining business are under threat. A major contributory factor to biodiversity decline comes from the cumulative impacts of extended supply chain business operations. However, within Corporate Responsibility (CR) reporting impacts on biodiversity due to supply chain operations have not traditionally been given equal weighting with other environmental issues. This paper investigates the extent of CR reporting in managing and publicising company biodiversity supply chain issues by reviewing a cross-sector sample of publicly available CR reports. The report contents were examined for suggestions of industrial sectorial trends in the level of biodiversity consideration. The reporting of environmental management system use within company supply chain management is assessed in the samples and is considered as a mechanism for responsible supplier partnership working.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) systems are becoming more commonly used in biomedical imaging and, to enable continued uptake, a reliable method of characterizing their performance and validating their operation is required. This paper outlines the use of femtosecond laser subsurface micro-inscription techniques to fabricate an OCT test artifact for validating the resolution performance of a commercial OCT system. The key advantage of this approach is that by utilizing the nonlinear absorption a three dimensional grid of highly localized point and line defects can be written in clear fused silica substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we have done back to back comparison of quantitive phase and refractive index from a microscopic image of waveguide previously obtained by Allsop et al. Paper also shows microscopic image of the first 3 waveguides from the sample. Tomlins et al. have demonstrated use of femtosecond fabricated artefacts as OCT calibration samples. Here we present the use of femtosecond waveguides, inscribed with optimized parameters, to test and calibrate the sensitivity of the OCT systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is a non-invasive three-dimensional imaging system that is capable of producing high resolution in-vivo images. OCT is approved for use in clinical trials in Japan, USA and Europe. For OCT to be used effectively in a clinical diagnosis, a method of standardisation is required to assess the performance across different systems. This standardisation can be implemented using highly accurate and reproducible artefacts for calibration at both installation and throughout the lifetime of a system. Femtosecond lasers can write highly reproducible and highly localised micro-structured calibration artefacts within a transparent media. We report on the fabrication of high quality OCT calibration artefacts in fused silica using a femtosecond laser. The calibration artefacts were written in fused silica due to its high purity and ability to withstand high energy femtosecond pulses. An Amplitude Systemes s-Pulse Yb:YAG femtosecond laser with an operating wavelength of 1026 nm was used to inscribe three dimensional patterns within the highly optically transmissive substrate. Four unique artefacts have been designed to measure a wide variety of parameters, including the points spread function (PSF), modulation transfer function (MTF), sensitivity, distortion and resolution - key parameters which define the performance of the OCT. The calibration artefacts have been characterised using an optical microscope and tested on a swept source OCT. The results demonstrate that the femtosecond laser inscribed artefacts have the potential of quantitatively and qualitatively validating the performance of any OCT system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent expansion of clinical applications for optical coherence tomography (OCT) is driving the development of approaches for consistent image acquisition. There is a simultaneous need for time-stable, easy-to-use imaging targets for calibration and standardization of OCT devices. We present calibration targets consisting of three-dimensional structures etched into nanoparticle-embedded resin. Spherical iron oxide nanoparticles with a predominant particle diameter of 400 nm were homogeneously dispersed in a two part polyurethane resin and allowed to harden overnight. These samples were then etched using a precision micromachining femtosecond laser with a center wavelength of 1026 nm, 100kHz repetition rate and 450 fs pulse duration. A series of lines in depth were etched, varying the percentage of inscription energy and speed of the translation stage moving the target with respect to the laser. Samples were imaged with a dual wavelength spectral-domain OCT system and point-spread function of nanoparticles within the target was measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent expansion of clinical applications for optical coherence tomography (OCT) is driving the development of approaches for consistent image acquisition. There is a simultaneous need for time-stable, easy-to-use imaging targets for calibration and standardization of OCT devices. We present calibration targets consisting of three-dimensional structures etched into nanoparticle-embedded resin. Spherical iron oxide nanoparticles with a predominant particle diameter of 400 nm were homogeneously dispersed in a two part polyurethane resin and allowed to harden overnight. These samples were then etched using a precision micromachining femtosecond laser with a center wavelength of 1026 nm, 100kHz repetition rate and 450 fs pulse duration. A series of lines in depth were etched, varying the percentage of inscription energy and speed of the translation stage moving the target with respect to the laser. Samples were imaged with a dual wavelength spectral-domain OCT system and point-spread function of nanoparticles within the target was measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the characterization of the temperature and strain responses of fiber Bragg grating sensors by use of an interferometric interrogation technique to provide an absolute measurement of the grating wavelength. The fiber Bragg grating temperature response was found to be nonlinear over the temperature range -70°C to 80°C. The nonlinearity was observed to be a quadratic function of temperature, arising from the linear dependence on temperature of the thermo-optic coefficient of silica glass over this range, and is in good agreement with a theoretical model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As optical coherence tomography (OCT) becomes widespread, validation and characterization of systems becomes important. Reference standards are required to qualitatively and quantitatively measure the performance between difference systems. This would allow the performance degradation of the system over time to be monitored. In this report, the properties of the femtosecond inscribed structures from three different systems for making suitable OCT characterization artefacts (phantoms) are analyzed. The parameter test samples are directly inscribed inside transparent materials. The structures are characterized using an optical microscope and a swept-source OCT. The high reproducibility of the inscribed structures shows high potential for producing multi-modality OCT calibration and characterization phantoms. Such that a single artefact can be used to characterize multiple performance parameters such the resolution, linearity, distortion, and imaging depths. © 2012 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the characterization of the temperature and strain responses of fiber Bragg grating sensors by use of an interferometric interrogation technique to provide an absolute measurement of the grating wavelength. The fiber Bragg grating temperature response was found to be nonlinear over the temperature range -70 °C to 80 °C. The nonlinearity was observed to be a quadratic function of temperature, arising from the linear dependence on temperature of the thermo-optic coefficient of silica glass over this range, and is in good agreement with a theoretical model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we have done back to back comparison of quantitive phase and refractive index from a microscopic image of waveguide previously obtained by Allsop et al. Paper also shows microscopic image of the first 3 waveguides from the sample. Tomlins et al. have demonstrated use of femtosecond fabricated artefacts as OCT calibration samples. Here we present the use of femtosecond waveguides, inscribed with optimized parameters, to test and calibrate the sensitivity of the OCT systems.