7 resultados para Virtual Manufacturing
em Aston University Research Archive
Resumo:
This thesis starts with a literature review, outlining the major issues identified in the literature concerning virtual manufacturing enterprise (VME) transformation. Then it details the research methodology used – a systematic approach for empirical research. next, based on the conceptual framework proposed, this thesis builds three modules to form a reference model, with the purpose of clarifying the important issues relevant to transforming a traditional manufacturing company into a VME. The first module proposes a mechanism of VME transformation – operating along the VME metabolism. The second module builds a management function within a VME to ensure a proper operation of the mechanism. This function helps identify six areas as closely related to VME transformation: lean manufacturing; competency protection; internal operation performance measurement; alliance performance measurement; knowledge management; alliance decision making. The third module continues and proposes an alliance performance measurement system which includes 14 categories of performance indicators. An analysis template for alliance decision making is also proposed and integrated into the first module. To validate these three modules, 7 manufacturing organisations (5 in China and 2 in the UK) were investigated, and these field case studies are analysed in this thesis. The evidence found in these organisations, together with the evidence collected from the literature, including both researcher views and literature case studies, provide support for triangulation evidence. In addition, this thesis identifies the strength and weakness patterns of the manufacturing companies within the theoretical niche of this research, and clarifies the relationships among some major research areas from the perspective of virtual manufacturing. Finally, the research findings are summarised, as well as their theoretical and practical implications. Research limitations and recommendations for future work conclude this thesis.
Resumo:
The global market has become increasingly dynamic, unpredictable and customer-driven. This has led to rising rates of new product introduction and turbulent demand patterns across product mixes. As a result, manufacturing enterprises were facing mounting challenges to be agile and responsive to cope with market changes, so as to achieve the competitiveness of producing and delivering products to the market timely and cost-effectively. This paper introduces a currency-based iterative agent bidding mechanism to effectively and cost-efficiently integrate the activities associated with production planning and control, so as to achieve an optimised process plan and schedule. The aim is to enhance the agility of manufacturing systems to accommodate dynamic changes in the market and production. The iterative bidding mechanism is executed based on currency-like metrics; each operation to be performed is assigned with a virtual currency value and agents bid for the operation if they make a virtual profit based on this value. These currency values are optimised iteratively and so does the bidding process based on new sets of values. This is aimed at obtaining better and better production plans, leading to near-optimality. A genetic algorithm is proposed to optimise the currency values at each iteration. In this paper, the implementation of the mechanism and the test case simulation results are also discussed. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
In today's market, the global competition has put manufacturing businesses in great pressures to respond rapidly to dynamic variations in demand patterns across products and changing product mixes. To achieve substantial responsiveness, the manufacturing activities associated with production planning and control must be integrated dynamically, efficiently and cost-effectively. This paper presents an iterative agent bidding mechanism, which performs dynamic integration of process planning and production scheduling to generate optimised process plans and schedules in response to dynamic changes in the market and production environment. The iterative bidding procedure is carried out based on currency-like metrics in which all operations (e.g. machining processes) to be performed are assigned with virtual currency values, and resource agents bid for the operations if the costs incurred for performing them are lower than the currency values. The currency values are adjusted iteratively and resource agents re-bid for the operations based on the new set of currency values until the total production cost is minimised. A simulated annealing optimisation technique is employed to optimise the currency values iteratively. The feasibility of the proposed methodology has been validated using a test case and results obtained have proven the method outperforming non-agent-based methods.