15 resultados para Turbulence

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study optical wave turbulence using as a particular example recently created ultralong-fiber laser. We show that the sign of the cavity dispersion has a critical impact on the spectral and temporal properties of generated radiation that are directly relevant to the fiber laser performance. For a normal dispersion, we observe an intermediate state with an extremely narrow spectrum condensate, which experiences an instability and a sharp transition to a strongly fluctuating regime with a wide spectrum and increased probability of spontaneous generation of large-amplitude pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider turbulence within the Gross-Pitaevsky model and look into the creation of a coherent condensate via an inverse cascade originating at small scales. The growth of the condensate leads to a spontaneous breakdown of statistical symmetries of overcondensate fluctuations: First, isotropy is broken, then a series of phase transitions marks the changing symmetry from twofold to threefold to fourfold. We describe respective anisotropic flux flows in the k space. At the highest level reached, we observe a short-range positional and long-range orientational order (as in a hexatic phase). In other words, the more one pumps the system, the more ordered the system becomes. The phase transitions happen when the system is pumped by an instability term and does not occur when pumped by a random force. We thus demonstrate nonuniversality of an inverse-cascade turbulence with respect to the nature of small-scale forcing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study numerically optical turbulence using the particular example of a recently created, ultra-long fibre laser. For normal fibre dispersion, we observed an intermediate state with an extremely narrow spectrum (condensate), which experiences instability and a sharp transition to a fluctuating regime with a wider spectrum. We demonstrate that the number of modes has an impact on the condensate’s lifetime. The smaller the number of modes, the more resistant is the condensate to perturbations. Experimental results show a good agreement with numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review recent progress in optical wave turbulence with a specific focus on the fast growing field of fibre lasers. Weak irregular nonlinear interactions between a large number of resonator modes are responsible for practically important characteristics of fibre lasers such as spectral broadening of radiation. Wave turbulence is a fundamental nonlinear phenomenon which occurs in a variety of nonlinear wave-bearing physical systems. The experimental impediments and the computationally intensive nature of simulating of hydrodynamic or plasma wave turbulence often make it rather challenging to collect a significant number of statistical data The study of turbulent wave behaviour in optical devices offers quite a unique opportunity to collect an enormous amount of data on statistical properties of wave turbulence using high-speed, high precision optical measurements during a relatively short period of time. We present recent theoretical, numerical and experimental results on optical wave turbulence in fibre lasers ranging from weak to strong developed turbulence for different signs of fibre dispersion. Furthermore, we report on our studies of spectral wave condensate in fibre lasers that make interdisciplinary links with a number of other research fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the behaviour of the mutual friction force in finite temperature quantum turbulence in 4He, paying particular attention to the role of quantized vortex reconnections. Through the use of the vortex filament model, we produce three experimentally relevant types of vortex tangles in steady-state conditions, and examine through statistical analysis, how local properties of the tangle influence the mutual friction force. Finally, by monitoring reconnection events, we present evidence to indicate that vortex reconnections are the dominant mechanism for producing areas of high curvature and velocity leading to regions of high mutual friction, particularly for homogeneous and isotropic vortex tangles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review recent progress in optical wave turbulence with a specific focus on the fast growing field of fibre lasers. Weak irregular nonlinear interactions between a large number of resonator modes are responsible for practically important characteristics of fibre lasers such as spectral broadening of radiation. Wave turbulence is a fundamental nonlinear phenomenon which occurs in a variety of nonlinear wave-bearing physical systems. The experimental impediments and the computationally intensive nature of simulating of hydrodynamic or plasma wave turbulence often make it rather challenging to collect a significant number of statistical data The study of turbulent wave behaviour in optical devices offers quite a unique opportunity to collect an enormous amount of data on statistical properties of wave turbulence using high-speed, high precision optical measurements during a relatively short period of time. We present recent theoretical, numerical and experimental results on optical wave turbulence in fibre lasers ranging from weak to strong developed turbulence for different signs of fibre dispersion. Furthermore, we report on our studies of spectral wave condensate in fibre lasers that make interdisciplinary links with a number of other research fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber lasers operating via Raman gain or based on rare-earth-doped active fibers are widely used as sources of CW radiation. However, these lasers are only quasi-CW: their intensity fluctuates strongly on short time scales. Here the framework of the complex Ginzburg-Landau equations, which are well known as an efficient model of mode-locked fiber lasers, is applied for the description of quasi-CW fiber lasers. The vector Ginzburg-Landau model of a Raman fiber laser describes the experimentally observed turbulent-like intensity dynamics, as well as polarization rogue waves. Our results open debates about the common underlying physics of operation of very different laser types - quasi-CW lasers and passively mode-locked lasers. Fiber lasers operating via Raman gain or based on rare-earth-doped active fibers are widely used as sources of CW radiation. However, these lasers are only quasi-CW: their intensity fluctuates strongly on short time scales. Here the framework of the complex Ginzburg-Landau equations, which are well known as an efficient model of mode-locked fiber lasers, is applied for the description of quasi-CW fiber lasers. The vector Ginzburg-Landau model of a Raman fiber laser describes the experimentally observed turbulent-like intensity dynamics, as well as polarization rogue waves. Our results open debates about the common underlying physics of operation of very different laser types - quasi-CW lasers and passively mode-locked lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study optical wave turbulence in Raman fibre lasers using particular examples of 13 km and 22 km long Fabry-Perot resonators. We demonstrate that the sign of the cavity dispersion has a critical impact on the spectral and temporal properties of generated radiation that are directly relevant to the fibre laser performance. For a normal dispersion, we observe in numerical modelling an intermediate state with an extremely narrow spectrum (condensate), which experiences instability and a sharp transition to a strongly fluctuating regime with a wider spectrum. The experimental results for the generated spectra demonstrate a good match with numerical simulations. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate quantum vortex ring dynamics at scales smaller than the inter-vortex spacing in quantum turbulence. Through geometrical arguments and high-resolution numerical simulations, we examine the validity of simple estimates for the mean free path and the structure of vortex rings post-reconnection. We find that a large proportion of vortex rings remain coherent objects where approximately 75% of their energy is preserved. This leads us to consider the effectiveness of energy transport in turbulent tangles. Moreover, we show that in low density tangles, appropriate for the ultra-quantum regime, ring emission cannot be ruled out as an important mechanism for energy dissipation. However at higher vortex line densities, typically associated with the quasi-classical regime, loop emission is expected to make a negligible contribution to energy dissipation, even allowing for the fact that our work shows rings can survive multiple reconnection events. Hence the Kelvin wave cascade seems the most plausible mechanism leading to energy dissipation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An inverse turbulent cascade in a restricted two-dimensional periodic domain creates a condensate—a pair of coherent system-size vortices. We perform extensive numerical simulations of this system and carry out theoretical analysis based on momentum and energy exchanges between the turbulence and the vortices. We show that the vortices have a universal internal structure independent of the type of small-scale dissipation, small-scale forcing, and boundary conditions. The theory predicts not only the vortex inner region profile, but also the amplitude, which both perfectly agree with the numerical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of the energy spectrum and of the vortex-density fluctuation spectrum in superfluid turbulence seem to contradict each other. Using a numerical model, we show that at each instance of time the total vortex line density can be decomposed into two parts: one formed by metastable bundles of coherent vortices, and one in which the vortices are randomly oriented. We show that the former is responsible for the observed Kolmogorov energy spectrum, and the latter for the spectrum of the vortex line density fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the statistical and dynamical behavior of turbulent Kelvin waves propagating on quantized vortices in superfluids and address the controversy concerning the energy spectrum that is associated with these excitations. Finding the correct energy spectrum is important because Kelvin waves play a major role in the dissipation of energy in superfluid turbulence at near-zero temperatures. In this paper, we show analytically that the solution proposed by [L’vov and Nazarenko, JETP Lett. 91, 428 (2010)] enjoys existence, uniqueness, and regularity of the prefactor. Furthermore, we present numerical results of the dynamical equation that describes to leading order the nonlocal regime of the Kelvin-wave dynamics. We compare our findings with the analytical results from the proposed local and nonlocal theories for Kelvin-wave dynamics and show an agreement with the nonlocal predictions. Accordingly, the spectrum proposed by L’vov and Nazarenko should be used in future theories of quantum turbulence. Finally, for weaker wave forcing we observe an intermittent behavior of the wave spectrum with a fluctuating dissipative scale, which we interpreted as a finite-size effect characteristic of mesoscopic wave turbulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study theoretically and numerically the dynamics of a passive optical fiber ring cavity pumped by a highly incoherent wave: an incoherently injected fiber laser. The theoretical analysis reveals that the turbulent dynamics of the cavity is dominated by the Raman effect. The forced-dissipative nature of the fiber cavity is responsible for a large diversity of turbulent behaviors: Aside from nonequilibrium statistical stationary states, we report the formation of a periodic pattern of spectral incoherent solitons, or the formation of different types of spectral singularities, e.g., dispersive shock waves and incoherent spectral collapse behaviors. We derive a mean-field kinetic equation that describes in detail the different turbulent regimes of the cavity and whose structure is formally analogous to the weak Langmuir turbulence kinetic equation in the presence of forcing and damping. A quantitative agreement is obtained between the simulations of the nonlinear Schrödinger equation with cavity boundary conditions and those of the mean-field kinetic equation and the corresponding singular integrodifferential reduction, without using adjustable parameters. We discuss the possible realization of a fiber cavity experimental setup in which the theoretical predictions can be observed and studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present theory, numerical simulations and experimental observations of a 1D optical wave system. We show that this system is of a dual cascade type, namely, the energy cascading directly to small scales, and the photons or wave action cascading to large scales. In the optical context the inverse cascade is particularly interesting because it means the condensation of photons. We show that the cascades are induced by a six-wave resonant interaction process described by weak turbulence theory. We show that by starting with weakly nonlinear randomized waves as an initial condition, there exists an inverse cascade of photons towards the lowest wavenumbers. During the cascade nonlinearity becomes strong at low wavenumbers and, due to the focusing nature of the nonlinearity, it leads to modulational instability resulting in the formation of solitons. Further interaction of the solitons among themselves and with incoherent waves leads to the final condensate state dominated by a single strong soliton. In addition, we show the existence of the direct energy cascade numerically and that it agrees with the wave turbulence prediction.