2 resultados para Thermal impedance

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes an in situ diagnostic and prognostic (D&P) technology to monitor the health condition of insulated gate bipolar transistors (IGBTs) used in EVs with a focus on the IGBTs' solder layer fatigue. IGBTs' thermal impedance and the junction temperature can be used as health indicators for through-life condition monitoring (CM) where the terminal characteristics are measured and the devices' internal temperature-sensitive parameters are employed as temperature sensors to estimate the junction temperature. An auxiliary power supply unit, which can be converted from the battery's 12-V dc supply, provides power to the in situ test circuits and CM data can be stored in the on-board data-logger for further offline analysis. The proposed method is experimentally validated on the developed test circuitry and also compared with finite-element thermoelectrical simulation. The test results from thermal cycling are also compared with acoustic microscope and thermal images. The developed circuitry is proved to be effective to detect solder fatigue while each IGBT in the converter can be examined sequentially during red-light stopping or services. The D&P circuitry can utilize existing on-board hardware and be embedded in the IGBT's gate drive unit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we investigated the effect of hydrogen termination on the electrical properties and impedance spectra of detonation nanodiamond. The impedance spectra revealed that the hydrogen-termination process increases the electrical conductivity by four orders of magnitude at room temperature. An equivalent circuit has been proposed to correlate with the conduction mechanism. Arrhenius plot showed that there were two different activation energy levels located at 0.089 eV and 0.63 eV between 50 °C and 400 °C. The possible physical mechanism corresponding to these activation energy levels has been discussed. Hydrogen-terminated detonation nanodiamond has been further annealed at different temperatures prior to FTIR and XPS measurements in order to understand their thermal stability. The results demonstrated that the surface oxidization occurred between 100 °C and 150 °C. However, the C-H bonds could partially survive when the temperature reaches 400 °C in air. © 2013 American Institute of Physics.