10 resultados para Thermal impedance

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis I investigate some aspects of the thermal budget of pahoehoe lava flows. This is done with a combination of general field observations, quantitative modeling, and specific field experiments. The results of this work apply to pahoehoe flows in general, even though the vast bulk of the work has been conducted on the lavas formed by the Pu'u 'O'o - Kupaianaha eruption of Kilauea Volcano on Hawai'i. The field observations rely heavily on discussions with the staff of the United States Geological Survey's Hawaiian Volcano Observatory (HVO), under whom I labored repeatedly in 1991-1993 for a period totaling about 10 months.

The quantitative models I have constructed are based on the physical processes observed by others and myself to be active on pahoehoe lava flows. By building up these models from the basic physical principles involved, this work avoids many of the pitfalls of earlier attempts to fit field observations with "intuitively appropriate" mathematical expressions. Unlike many earlier works, my model results can be analyzed in terms of the interactions between the different physical processes. I constructed models to: (1) describe the initial cooling of small pahoehoe flow lobes and (2) understand the thermal budget of lava tubes.

The field experiments were designed either to validate model results or to constrain key input parameters. In support of the cooling model for pahoehoe flow lobes, attempts were made to measure: (1) the cooling within the flow lobes, (2) the amount of heat transported away from the lava by wind, and (3) the growth of the crust on the lobes. Field data collected by Jones [1992], Hon et al. [1994b], and Denlinger [Keszthelyi and Denlinger, in prep.] were also particularly useful in constraining my cooling model for flow lobes. Most of the field observations I have used to constrain the thermal budget of lava tubes were collected by HVO (geological and geophysical monitoring) and the Jet Propulsion Laboratory (airborne infrared imagery [Realmuto et al., 1992]). I was able to assist HVO for part of their lava tube monitoring program and also to collect helicopterborne and ground-based IR video in collaboration with JPL [Keszthelyi et al., 1993].

The most significant results of this work are (1) the quantitative demonstration that the emplacement of pahoehoe and 'a'a flows are the fundamentally different, (2) confirmation that even the longest lava flows observed in our Solar System could have formed as low effusion rate, tube-fed pahoehoe flows, and (3) the recognition that the atmosphere plays a very important role throughout the cooling of history of pahoehoe lava flows. In addition to answering specific questions about the thermal budget of tube-fed pahoehoe lava flows, this thesis has led to some additional, more general, insights into the emplacement of these lava flows. This general understanding of the tube-fed pahoehoe lava flow as a system has suggested foci for future research in this part of physical volcanology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this thesis is to develop a proper microelectromechanical systems (MEMS) process to manufacture piezoelectric Parylene-C (PA-C), which is famous for its chemical inertness, mechanical and thermal properties and electrical insulation. Furthermore, piezoelectric PA-C is used to build miniature, inexpensive, non-biased piezoelectric microphones.

These piezoelectric PA-C MEMS microphones are to be used in any application where a conventional piezoelectric and electret microphone can be used, such as in cell phones and hearing aids. However, they have the advantage of a simplified fabrication process compared with existing technology. In addition, as a piezoelectric polymer, PA-C has varieties of applications due to its low dielectric constant, low elastic stiffness, low density, high voltage sensitivity, high temperature stability and low acoustic and mechanical impedance. Furthermore, PA-C is an FDA approved biocompatible material and is able to maintain operate at a high temperature.

To accomplish piezoelectric PA-C, a MEMS-compatible poling technology has been developed. The PA-C film is poled by applying electrical field during heating. The piezoelectric coefficient, -3.75pC/N, is obtained without film stretching.

The millimeter-scale piezoelectric PA-C microphone is fabricated with an in-plane spiral arrangement of two electrodes. The dynamic range is from less than 30 dB to above 110 dB SPL (referenced 20 µPa) and the open-circuit sensitivities are from 0.001 – 0.11 mV/Pa over a frequency range of 1 - 10 kHz. The total harmonic distortion of the device is less than 20% at 110 dB SPL and 1 kHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geometry and constituent materials of metastructures can be used to engineer the thermal expansion coefficient. In this thesis, we design, fabricate, and test thin thermally stable metastructures consisting of bi-metallic unit cells and show how the coefficient of thermal expansion (CTE) of these metastructures can be finely and coarsely tuned by varying the CTE of the constituent materials and the unit cell geometry. Planar and three-dimensional finite element method modeling is used to drive the design and inform experiments, and predict the response of these metastructures. We demonstrate computationally the significance of out-of-plane effects in the metastructure response. We develop an experimental setup using digital image correlation and an infrared camera to experimentally measure full displacement and temperature fields during testing and accurately measure the metastructures’ CTE. We experimentally demonstrate high aspect ratio metastructures of Ti/Al and Kovar/Al which exhibit near-zero and negative CTE, respectively. We demonstrate robust fabrication procedures for thermally stable samples with high aspect ratios in thin foil and thin film scales. We investigate the lattice structure and mechanical properties of thin films comprising a near-zero CTE metastructure. The mechanics developed in this work can be used to engineer metastructures of arbitrary CTE and can be extended to three dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superprotonic phase transitions and thermal behaviors of three complex solid acid systems are presented, namely Rb3H(SO4)2-RbHSO4 system, Rb3H(SeO4)2-Cs3H(SeO4)2 solid solution system, and Cs6(H2SO4)3(H1.5PO4)4. These material systems present a rich set of phase transition characteristics that set them apart from other, simpler solid acids. A.C. impedance spectroscopy, high-temperature X-ray powder diffraction, and thermal analysis, as well as other characterization techniques, were employed to investigate the phase behavior of these systems.

Rb3H(SO4)2 is an atypical member of the M3H(XO4)2 class of compounds (M = alkali metal or NH4+ and X = S or Se) in that a transition to a high-conductivity state involves disproportionation into two phases rather than a simple polymorphic transition [1]. In the present work, investigations of the Rb3H(SO4)2-RbHSO4 system have revealed the disproportionation products to be Rb2SO4 and the previously unknown compound Rb5H3(SO4)4. The new compound becomes stable at a temperature between 25 and 140 °C and is isostructural to a recently reported trigonal phase with space group P3̅m of Cs5H3(SO4)4 [2]. At 185 °C the compound undergoes an apparently polymorphic transformation with a heat of transition of 23.8 kJ/mol and a slight additional increase in conductivity.

The compounds Rb3H(SeO4)2 and Cs3H(SeO4)2, though not isomorphous at ambient temperatures, are quintessential examples of superprotonic materials. Both adopt monoclinic structures at ambient temperatures and ultimately transform to a trigonal (R3̅m) superprotonic structure at slightly elevated temperatures, 178 and 183 °C, respectively. The compounds are completely miscible above the superprotonic transition and show extensive solubility below it. Beyond a careful determination of the phase boundaries, we find a remarkable 40-fold increase in the superprotonic conductivity in intermediate compositions rich in Rb as compared to either end-member.

The compound Cs6(H2SO4)3(H1.5PO4)4 is unusual amongst solid acid compounds in that it has a complex cubic structure at ambient temperature and apparently transforms to a simpler cubic structure of the CsCl-type (isostructural with CsH2PO4) at its transition temperature of 100-120 °C [3]. Here it is found that, depending on the level of humidification, the superprotonic transition of this material is superimposed with a decomposition reaction, which involves both exsolution of (liquid) acid and loss of H2O. This reaction can be suppressed by application of sufficiently high humidity, in which case Cs6(H2SO4)3(H1.5PO4)4 undergoes a true superprotonic transition. It is proposed that, under conditions of low humidity, the decomposition/dehydration reaction transforms the compound to Cs6(H2-0.5xSO4)3(H1.5PO4)4-x, also of the CsCl structure type at the temperatures of interest, but with a smaller unit cell. With increasing temperature, the decomposition/dehydration proceeds to greater and greater extent and unit cell of the solid phase decreases. This is identified to be the source of the apparent negative thermal expansion behavior.

References

[1] L.A. Cowan, R.M. Morcos, N. Hatada, A. Navrotsky, S.M. Haile, Solid State Ionics 179 (2008) (9-10) 305.

[2] M. Sakashita, H. Fujihisa, K.I. Suzuki, S. Hayashi, K. Honda, Solid State Ionics 178 (2007) (21-22) 1262.

[3] C.R.I. Chisholm, Superprotonic Phase Transitions in Solid Acids: Parameters affecting the presence and stability of superprotonic transitions in the MHnXO4 family of compounds (X=S, Se, P, As; M=Li, Na, K, NH4, Rb, Cs), Materials Science, California Institute of Technology, Pasadena, California (2003).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal noise arising from mechanical loss in high reflective dielectric coatings is a significant source of noise in precision optical measurements. In particular, Advanced LIGO, a large scale interferometer aiming to observed gravitational wave, is expected to be limited by coating thermal noise in the most sensitive region around 30–300 Hz. Various theoretical calculations for predicting coating Brownian noise have been proposed. However, due to the relatively limited knowledge of the coating material properties, an accurate approximation of the noise cannot be achieved. A testbed that can directly observed coating thermal noise close to Advanced LIGO band will serve as an indispensable tool to verify the calculations, study material properties of the coating, and estimate the detector’s performance.

This dissertation reports a setup that has sensitivity to observe wide band (10Hz to 1kHz) thermal noise from fused silica/tantala coating at room temperature from fixed-spacer Fabry–Perot cavities. Important fundamental noises and technical noises associated with the setup are discussed. The coating loss obtained from the measurement agrees with results reported in the literature. The setup serves as a testbed to study thermal noise in high reflective mirrors from different materials. One example is a heterostructure of AlxGa1−xAs (AlGaAs). An optimized design to minimize thermo–optic noise in the coating is proposed and discussed in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem is to calculate the attenuation of plane sound waves passing through a viscous, heat-conducting fluid containing small spherical inhomogeneities. The attenuation is calculated by evaluating the rate of increase of entropy caused by two irreversible processes: (1) the mechanical work done by the viscous stresses in the presence of velocity gradients, and (2) the flow of heat down the thermal gradients. The method is first applied to a homogeneous fluid with no spheres and shown to give the classical Stokes-Kirchhoff expressions. The method is then used to calculate the additional viscous and thermal attenuation when small spheres are present. The viscous attenuation agrees with Epstein's result obtained in 1941 for a non-heat-conducting fluid. The thermal attenuation is found to be similar in form to the viscous attenuation and, for gases, of comparable magnitude. The general results are applied to the case of water drops in air and air bubbles in water.

For water drops in air the viscous and thermal attenuations are camparable; the thermal losses occur almost entirely in the air, the thermal dissipation in the water being negligible. The theoretical values are compared with Knudsen's experimental data for fogs and found to agree in order of magnitude and dependence on frequency. For air bubbles in water the viscous losses are negligible and the calculated attenuation is almost completely due to thermal losses occurring in the air inside the bubbles, the thermal dissipation in the water being relatively small. (These results apply only to non-resonant bubbles whose radius changes but slightly during the acoustic cycle.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aspartic acid, threonine, serine and other thermally unstable amino acids have been found in fine-grained elastic sediments of advanced geologic age. The presence of these compounds in ancient sediments conflicts with experimental data determined for their simple thermal decomposition.

Recent and Late Miocene sediments and their humic acid extracts, known to contain essentially complete suites of amino acids, were heated with H2O in a bomb at temperatures up to 500°C in order to compare the thermal decomposition characteristics of the sedimentary amino compounds.

Most of the amino acids found in protein hydrolyzates are obtained from the Miocene rock in amounts 10 to 100 times less than from the Recent sediment. The two unheated humic acids are rather similar despite their great age difference. The Miocene rock appears uncontaminated by Recent carbon.

Yields of amino acids generally decline in the heated Recent sediment. Some amino compounds apparently increase with heating time in the Miocene rock.

Relative thermal stabilities of the amino acids in sediments are generally similar to those determined using pure aqueous solutions. The relative thermal stabilities of glutamic acid, glycine, and phenylalanine vary in the Recent sediment but are uniform in the Miocene rock.

Amino acids may occur in both proteins and humic complexes in the Recent sediment, while they are probably only present in stabilized organic substances in the Miocene rock. Thermal decomposition of protein amino acids may be affected by surface catalysis in the Recent sediment. The apparent activation energy for the decomposition of alanine in this sediment is 8400 calories per mole. Yields of amino compounds from the heated sediments are not affected by thermal decomposition only.

Amino acids in sediments may only be useful for geothermometry in a very general way.

A better picture of the amino acid content of older sedimentary rocks may be obtained if these sediments are heated in a bomb with H2O at temperatures around 150°C prior to HCl hydrolysis.

Leucine-isoleucine ratios may prove to be useful as indicators of amino acid sources or for evaluating the fractionation of these substances during diagenesis. Leucine-isoleucine ratios of the Recent and Miocene sediments and humic acids are identical. The humic acids may have a continental source.

The carbon-nitrogen and carbon-hydrogen ratios of sediments and humic acids increase with heating time and temperature. Ratios comparable to those in some kerogens are found in the severely heated Miocene sediment and humic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theory of electromagnetic absorption is presented to explain the changes in surface impedance for Pippard superconductors (ξo ≫λ) due to large static magnetic fields. The static magnetic field penetrating the metal near the surface induces a momentum dependent potential in Bogolubov's equations. Such a potential modifies a quasiparticle's wavefunction and excitation spectrum. These changes affect the behavior of the surface impedance in a way that in large measure agrees with available observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microwave response of the superconducting state in equilibrium and non-equilibrium configurations was examined experimentally and analytically. Thin film superconductors were mostly studied in order to explore spatial effects. The response parameter measured was the surface impedance.

For small microwave intensity the surface impedance at 10 GHz was measured for a variety of samples (mostly Sn) over a wide range of sample thickness and temperature. A detailed analysis based on the BCS theory was developed for calculating the surface impedance for general thickness and other experimental parameters. Experiment and theory agreed with each other to within the experimental accuracy. Thus it was established that the samples, thin films as well as bulk, were well characterised at low microwave powers (near equilibrium).

Thin films were perturbed by a small dc supercurrent and the effect on the superconducting order parameter and the quasiparticle response determined by measuring changes in the surface resistance (still at low microwave intensity and independent of it) due to the induced current. The use of fully superconducting resonators enabled the measurement of very small changes in the surface resistance (< 10-9 Ω/sq.). These experiments yield information regarding the dynamics of the order parameter and quasiparticle systems. For all the films studied the results could be described at temperatures near Tc by the thermodynamic depression of the order parameter due to the static current leading to a quadratic increase of the surface resistance with current.

For the thinnest films the low temperature results were surprising in that the surface resistance decreased with increasing current. An explanation is proposed according to which this decrease occurs due to an additional high frequency quasiparticle current caused by the combined presence of both static and high frequency fields. For frequencies larger than the inverse of the quasiparticle relaxation time this additional current is out of phase (by π) with the microwave electric field and is observed as a decrease of surface resistance. Calculations agree quantitatively with experimental results. This is the first observation and explanation of this non-equilibrium quasiparticle effect.

For thicker films of Sn, the low temperature surface resistance was found to increase with applied static current. It is proposed that due to the spatial non-uniformity of the induced current distribution across the thicker films, the above purely temporal analysis of the local quasiparticle response needs to be generalised to include space and time non-equilibrium effects.

The nonlinear interaction of microwaves arid superconducting films was also examined in a third set of experiments. The surface impedance of thin films was measured as a function of the incident microwave magnetic field. The experiments exploit the ability to measure the absorbed microwave power and applied microwave magnetic field absolutely. It was found that the applied surface microwave field could not be raised above a certain threshold level at which the absorption increased abruptly. This critical field level represents a dynamic critical field and was found to be associated with the penetration of the app1ied field into the film at values well below the thermodynamic critical field for the configuration of a field applied to one side of the film. The penetration occurs despite the thermal stability of the film which was unequivocally demonstrated by experiment. A new mechanism for such penetration via the formation of a vortex-antivortex pair is proposed. The experimental results for the thinnest films agreed with the calculated values of this pair generation field. The observations of increased transmission at the critical field level and suppression of the process by a metallic ground plane further support the proposed model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to determine the properties of the bicycloheptatrienyl anion (Ia) (predicted to be conjugatively stabilized by Hückel Molecular Orbital Theory) the neutral precursor, bicyclo[3. 2. 0] hepta-1, 4, 6-triene (I) was prepared by the following route.

Reaction of I with potassium-t-butoxide, potassium, or lithium dicyclohexylamide gave anion Ia in very low yield. Reprotonation of I was found to occur solely at the 1 or 5 position to give triene II, isolated as to its dimers.

A study of the acidity of I and of other conjugated hydrocarbons by means of ion cyclotron resonance spectroscopy resulted in determination of the following order of relative acidities:

H2S ˃ C5H6 ˃ CH3NO2 ˃ 1, 4- C5H8 ˃ I ˃ C2H5OH ˃ H2O; cyclo-C7H8 ˃ C2 H5OH; фCH3 ˃ CH3OH

In addition, limits for the proton affinities of the conjugate bases were determined:

350 kcal/mole ˂ PA(C5 H5-) ˂ 360 kcal/mole

362 kcal/mole ˂ PA(C5H7-, Ia, cyclo-C7H7-) ˂ 377 kcal/mole PA(фCH2-) ˂ 385 kcal/mole

Gas phase kinetics of the trans-XVIII to I transformation gave the following activation parameters: Ea = 43.0 kcal/mole, log A = 15.53 and ∆Sǂ (220°) = 9.6 cu. The results were interpreted as indicating initial 1,2 bond cleavage to give the 1,3-diradical which closed to I. Similar studies on cis-XVIII gave results consistent with a surface component to the reaction (Ea = 22.7 kcal/mole; log A = 9.23, ∆Sǂ (119°) = -18.9 eu).

The low pressure (0.01 to 1 torr) pyrolysis of trans-XVIII gave in addition to I, fulvenallene (LV), ethynylcyclopentadiene (LVI) and heptafulvalene (LVII). The relative ratios of the C7H6 isomers were found to be dependent upon temperature and pressure, higher relative pressure and lower temperatures favoring formation of I. The results were found to be consistent with the intermediacy of vibrationally excited I and subsequent reaction to give LV and LVI.