13 resultados para Textile dyes

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the 1960s the benefits of government regulation of technology were believed to outweigh any costs. But recent studies have claimed that regulation has negative effects on innovation, health and consumer choice. This case study on food colours examines such claims. EFFECTS ON HEALTH were measured by allocating a hazard rating to each colour. The negative list of 1925 removed three harmful colours which were rapidly replaced, so the benefits were short-lived. Had a proposed ban been adopted in the 1860s it would have prevented many years exposure to hazardous mineral colours. The positive list of 1957 reduced the proportion of harmful coal tar dyes from 54% of the total to 20%. Regulations brought a greater reduction in hazard levels than voluntary trade action. Delays in the introduction of a positive list created a significant hazard burden. EFFECTS ON INNOVATION were assessed from patents and discovery dates. Until the 1950s food colours were adopted from textile colours. The major period of innovation for coal tar colours was between 1856 and 1910, finishing well before regulations were made in 1957, so regulations cannot be blamed for the decline. Regulations appear to have spurred the development of at least one new coal tar dye, and many new plant colours, creating a new sector of the dye industry. EFFECTS ON CONSUMER CHOICE were assessed by case studies. Coloured milk, for example, was banned despite its popularity. Regulations have restricted choice, but have removed from the market foods that were nutritionally impoverished and poor value for money. Compositional regulations provided health protection because they reduced total exposure to colours from certain staple foods. Restricting colours to a smaller range of foods would be an effective way of coping with problems of quality and imperfect toxicological knowledge today.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High quality CuS and CuS/ZnS core/shell nanocrystals (NCs) were synthesized in a large quantity using a facile hydrothermal method at low temperatures of 60 C and evaluated in the photodegradation of Rhodamine B (RhB) under visible light irradiation. Synthesis time plays an important role in controlling the morphology, size and photocatalytic activity of both CuS and CuS/ZnS core/shell NCs which evolve from spherical shaped particles to form rods with increasing reaction time, and after 5 h resemble "flower" shaped morphologies in which each "flower" is composed of many NCs. Photocatalytic activity originates from photo-generated holes in the narrow bandgap CuS, with encapsulation by large bandgap ZnS layers used to form the core/shell structure that improves the resistance of CuS towards photocorrosion. Such CuS/ZnS core/shell structures exhibit much higher photocatalytic activity than CuS or ZnS NCs alone under visible light illumination, and is attributed to higher charge separation rates for the photo-generated carriers in the core/shell structure. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using firm-level data from nine developing countries, we demonstrate that certain institutions, like restrictive labour market regulations, that are considered bad for economic growth might be beneficial for production efficiency, whereas good business environment, which is considered beneficial for economic growth, might have an adverse impact on production efficiency. We argue that our results suggest that there might be significant difference in the macro- and micro-impacts of institutional quality, such that the classification of institutions into 'good' and 'bad might be premature. © The Author 2013. Published by Oxford University Press on behalf of the Cambridge Political Economy Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The newly synthesized dioxaborine dyes were studied aiming to probe amines and carbon nanotubes, which are potential toxic industrial polluters. To detect the targeted analytes in efficient way, series of ca. 20 dioxaborine dyes were synthesized and tested for reactivity with amines and carbon nanotubes. The most promising result was showed for styryl dye with the fluorescent sensitivity to amines up to 1 ppm. A fluorescent response of the dioxaborine dyes on presence of carbon nanotubes was revealed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multifunctional properties of carbon nanotubes (CNTs) make them a powerful platform for unprecedented innovations in a variety of practical applications. As a result of the surging growth of nanotechnology, nanotubes present a potential problem as an environmental pollutant, and as such, an efficient method for their rapid detection must be established. Here, we propose a novel type of ionic sensor complex for detecting CNTs – an organic dye that responds sensitively and selectively to CNTs with a photoluminescent signal. The complexes are formed through Coulomb attractions between dye molecules with uncompensated charges and CNTs covered with an ionic surfactant in water. We demonstrate that the photoluminescent excitation of the dye can be transferred to the nanotubes, resulting in selective and strong amplification (up to a factor of 6) of the light emission from the excitonic levels of CNTs in the near-infrared spectral range, as experimentally observed via excitation-emission photoluminescence (PL) mapping. The chirality of the nanotubes and the type of ionic surfactant used to disperse the nanotubes both strongly affect the amplification; thus, the complexation provides sensing selectivity towards specific CNTs. Additionally, neither similar uncharged dyes nor CNTs covered with neutral surfactant form such complexes. As model organic molecules, we use a family of polymethine dyes with an easily tailorable molecular structure and, consequently, tunable absorbance and PL characteristics. This provides us with a versatile tool for the controllable photonic and electronic engineering of an efficient probe for CNT detection.