9 resultados para Strain gauges

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Issues of wear and tribology are increasingly important in computer hard drives as slider flying heights are becoming lower and disk protective coatings thinner to minimise spacing loss and allow higher areal density. Friction, stiction and wear between the slider and disk in a hard drive were studied using Accelerated Friction Test (AFT) apparatus. Contact Start Stop (CSS) and constant speed drag tests were performed using commercial rigid disks and two different air bearing slider types. Friction and stiction were captured during testing by a set of strain gauges. System parameters were varied to investigate their effect on tribology at the head/disk interface. Chosen parameters were disk spinning velocity, slider fly height, temperature, humidity and intercycle pause. The effect of different disk texturing methods was also studied. Models were proposed to explain the influence of these parameters on tribology. Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) were used to study head and disk topography at various test stages and to provide physical parameters to verify the models. X-ray Photoelectron Spectroscopy (XPS) was employed to identify surface composition and determine if any chemical changes had occurred as a result of testing. The parameters most likely to influence the interface were identified for both CSS and drag testing. Neural Network modelling was used to substantiate results. Topographical AFM scans of disk and slider were exported numerically to file and explored extensively. Techniques were developed which improved line and area analysis. A method for detecting surface contacts was also deduced, results supported and explained observed AFT behaviour. Finally surfaces were computer generated to simulate real disk scans, this allowed contact analysis of many types of surface to be performed. Conclusions were drawn about what disk characteristics most affected contacts and hence friction, stiction and wear.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed literature survey confirmed cold roll-forming to be a complex and little understood process. In spite of its growing value, the process remains largely un-automated with few principles used in set-up of the rolling mill. This work concentrates on experimental investigations of operating conditions in order to gain a scientific understanding of the process. The operating conditions are; inter-pass distance, roll load, roll speed, horizontal roll alignment. Fifty tests have been carried out under varied operating conditions, measuring section quality and longitudinal straining to give a picture of bending. A channel section was chosen for its simplicity and compatibility with previous work. Quality measurements were measured in terms of vertical bow, twist and cross-sectional geometric accuracy, and a complete method of classifying quality has been devised. The longitudinal strain profile was recorded, by the use of strain gauges attached to the strip surface at five locations. Parameter control is shown to be important in allowing consistency in section quality. At present rolling mills are constructed with large tolerances on operating conditions. By reduction of the variability in parameters, section consistency is maintained and mill down-time is reduced. Roll load, alignment and differential roll speed are all shown to affect quality, and can be used to control quality. Set-up time is reduced by improving the design of the mill so that parameter values can be measured and set, without the need for judgment by eye. Values of parameters can be guided by models of the process, although elements of experience are still unavoidable. Despite increased parameter control, section quality is variable, if only due to variability in strip material properties. Parameters must therefore be changed during rolling. Ideally this can take place by closed-loop feedback control. Future work lies in overcoming the problems connected with this control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis describes the work carried out on the development of a novel digit actuator system with tactile perception feedback to a user and demonstrated as a master-slave system. For the tactile surface of the digit, contrasting sensor elements of resistive strain gauges and optical fibre Bragg grating sensors were evaluated. A distributive tactile sensing system consisting of optimised neural networking schemes was developed, resulting in taxonomy of artificial touch. The device is suitable for use in minimal invasive surgical (MIS) procedures as a steerable tip and a digit constructed wholly from polymers makes it suitable for use in Magnetic Resonance Imaging (MRI) environments enabling active monitoring of the patient during a procedure. To provide a realistic template of the work the research responded to the needs of two contrasting procedures: palpation of the prostate and endotracheal intubation in anaesthesia where the application of touch sense can significantly assist navigation. The performance of the approach was demonstrated with an experimental digit constructed for use in the laboratory in phantom trials. The phantom unit was developed to resemble facets of the clinical applications and digit system is able to evaluate reactive force distributions acting over the surface of the digit as well as different descriptions of contact and motion relative to the surface of the lumen. Completing control of the digit is via an instrumented glove, such that the digit actuates in sympathy with finger gesture and tactile information feedback is achieved by a combination of the tactile and visual means.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Distributive tactile sensing is a method of tactile sensing in which a small number of sensors monitors the behaviour of a flexible substrate which is in contact with the object being sensed. This paper describes the first use of fibre Bragg grating sensors in such a system. Two systems are presented: the first is a one-dimensional metal strip with an array of four sensors, which is capable of detecting the magnitude and position of a contacting load. This system is favourably compared experimentally with a similar system using resistive strain gauges. The second system is a two-dimensional steel plate with nine sensors which is able to distinguish the position and shape of a contacting load, or the positions of two loads simultaneously. This system is compared with a similar system using 16 infrared displacement sensors. Each system uses neural networks to process the sensor data to give information concerning the type of contact. Issues and limitations of the systems are discussed, along with proposed solutions to some of the difficulties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two distributive tactile sensing systems are presented, based on fibre Bragg grating sensors. The first is a onedimensional metal strip with an array of 4 sensors, which is capable of detecting the magnitude and position of a contacting load. This system is compared experimentally with a similar system using resistive strain gauges. The second is a two-dimensional steel plate with 9 sensors which is able to distinguish the position and shape of a contacting load. This system is compared with a similar system using 16 infrared displacement sensors. Each system uses neural networks to process the sensor data to give information concerning the type of contact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Distributive tactile sensing is a method of tactile sensing in which a small number of sensors monitors the behaviour of a flexible substrate which is in contact with the object being sensed. This paper describes the first use of fibre Bragg grating sensors in such a system. Two systems are presented: the first is a one-dimensional metal strip with an array of four sensors, which is capable of detecting the magnitude and position of a contacting load. This system is favourably compared experimentally with a similar system using resistive strain gauges. The second system is a two-dimensional steel plate with nine sensors which is able to distinguish the position and shape of a contacting load, or the positions of two loads simultaneously. This system is compared with a similar system using 16 infrared displacement sensors. Each system uses neural networks to process the sensor data to give information concerning the type of contact. Issues and limitations of the systems are discussed, along with proposed solutions to some of the difficulties. © 2007 IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we report the first demonstration of multiplexed fibre Bragg grating strain sensors in a multicore fibre for shape measurement and their application to structural monitoring. Sets of gratings, acting as strain gauges, are co-located in the multicore fibre such that they enable the curvature to be determined via differential strain measurement. Multiple sets of these gratings allow the curvature to be measured at several points along the fibre. In this paper, the multicore fibre is configured to measure the deflection of a simple mechanical beam arising from the displacement of concrete tunnel sections. Laboratory tests are presented in which the system was demonstrated capable of displacement measurement with a resolution of ±0.1 mm over a range of several millimetres. © 2006 IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two distributive tactile sensing systems are presented, based on fibre Bragg grating sensors. The first is a one-dimensional metal strip with an array of 4 sensors, which is capable of detecting the magnitude and position of a contacting load. This system is compared experimentally with a similar system using resistive strain gauges. The second is a two-dimensional steel plate with 9 sensors which is able to distinguish the position and shape of a contacting load. This system is compared with a similar system using 16 infrared displacement sensors. Each system uses neural networks to process the sensor data to give information concerning the type of contact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe what is to our knowledge the first use of fiber Bragg gratings written into three separate cores of a multicore fiber for two-axis curvature measurement. The gratings act as independent, but isothermal, fiber strain gauges for which local curvature determines the difference in strain between cores, permitting temperature-independent bend measurement.