56 resultados para Square-lattice photonic crystal

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reported are experimental results from investigations of the sensing properties of long-period gratings (LPGs) recorded in two different geometries of photonic crystal fibre (PCF): a large-mode area PCF and an endlessly single mode PCF. The LPGs have been characterised for their sensitivity to temperature, bending, surrounding index and strain. The LPGs in both fibres have been found to have negligible temperature sensitivity whilst exhibiting useful strain sensitivities. Strong directional bend sensitivity is shown by one PCF whilst the other shows good non-directional bend sensitivity. The fibres exhibit differing sensitivities to surrounding refractive index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A long period grating has been fabricated in endlessly single-mode photonic crystal fibre using a spatially-periodic electric arc discharge. The sensing characteristics of the grating have been studied and it was found to possess an insensitivity to temperature, a bend sensitivity of 3.7 nm · m and a strain sensitivity of -2.0 pm/µe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical model of a long period grating in photonic crystal fibre fabricated by an electric arc is proposed that allows for the spectral characterisation of the grating. In the combination with the suggested model of the photonic crystal and the experimentally recorded grating growth it is used to find the index change induced by the electric arc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to characterise long period gratings fabricated in endlessly single mode photonic crystal fibres with bulk cladding we perform eigenanalysis of guided modes supported by these fibres. Resonant coupling occurs only when the beating length equals the multiple grating periods. Experimentally obtained grating spectra and sensitivity are fully explained using modified phase matching condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of symmetric and asymmetric LPGs were inscribed in photonic crystal fibre by a low repetition rate femtosecond laser system. The asymmetric LPGs were found to be spectrally sensitive to bend orientation, with some of the attenuation bands producing both red and blue wavelength shifts, whilst the symmetric devices produced only a unidirectional wavelength shift. Both sets of devices displayed strong polarisation dependence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global and local synchronisation of a square lattice composed of alternating Duffing resonators and van der Pol oscillators coupled through displacement is studied. The lattice acts as a sensing device in which the input signal is characterised by an external driving force that is injected into the system through a subset of the Duffing resonators. The parameters of the system are taken from MEMS devices. The effects of the system parameters, the lattice architecture and size are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of near infrared, high intensity femtosecond laser pulses for the inscription of long period fiber gratings in photonic crystal fiber is reported. The formation of grating structures in photonic crystal fiber is complicated by the fiber structure that allows wave-guidance but that impairs and scatters the femtosecond inscription beam. The effects of symmetric and asymmetric femtosecond laser inscriptions are compared and the polarization characteristics of long period gratings and their responses to external perturbations are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An equivalent step index fibre with a silica core and air cladding is used to model photonic crystal fibres with large air holes. We model this fibre for linear polarisation (we focus on the lowest few transverse modes of the electromagnetic field). The equivalent step index radius is obtained by equating the lowest two eigenvalues of the model to those calculated numerically for the photonic crystal fibres. The step index parameters thus obtained can then be used to calculate nonlinear parameters like the nonlinear effective area of a photonic crystal fibre or to model nonlinear few-mode interactions using an existing model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of high intensity femtosecond laser sources for inscribing fibre gratings has attained significant interest. The principal advantage of high-energy pulses is their ability for grating inscription in any material type without preprocessing or special core doping - the inscription process is controlled multi-photon absorption, void generation and subsequent local refractive index changes. The formation of grating structures in photonics crystal fibre has proven difficult, as the presence of holes within the fibre that allow wave-guidance impair and scatter the femtosecond inscription beam. Here we report on the consistent manufacture of long period gratings in endlessly single mode microstructure fibre and on their characterisation to external perturbations. Long period gratings are currently the subject of considerable research interest due to their potential applications as filters and as sensing devices, responsive to strain, temperature, bending and refractive index. Compared to the more mature fibre Bragg grating sensors, LPGs have more complex spectra, usually with broader spectral features. On the other hand they are intrinsically sensitive to bending and refractive index. Perhaps more importantly, the fibre design and choice of grating period can have a considerable influence over the sensitivity to the various parameters, for example allowing the creation of a bend sensor with minimal temperature cross-sensitivity. This control is not possible with FBG sensors. Here we compare the effects of symmetric and asymmetric femtosecond laser inscription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of LPGs with the same period was inscribed by femtosecond laser into photonic crystal fibre with various powers. All suffered post-fabrication spectral evolution at low temperatures, apparently related to inscription power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of high intensity femtosecond laser sources for inscribing fibre gratings has attained significant interest. The principal advantage of high-energy pulses is their ability for grating inscription in any material type without preprocessing or special core doping. In the field of fibre optical sensing LPGs written in photonic crystal fibre have a distinct advantage of low temperature sensitivity over gratings written in conventional fibre and thus minimal temperature cross-sensitivity. Previous studies have indicated that LPGs written by a point-by-point inscription scheme using a low repetition femtosecond laser exhibit post-fabrication evolution leading to temporal instabilities at room temperatures with respect to spectral location, strength and birefringence of the attenuation bands. These spectral instabilities of LPGs are studied in photonic crystal fibres (endlessly single mode microstructure fibre) to moderately high temperatures 100°C to 200°C and their performance compared to fusion-arc fabricated LPG. Initial results suggest that the fusion-arc fabricated LPG demonstrate less spectral instability for a given constant and moderate temperature, and are similar to the results obtained when inscribed in a standard single mode fibre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of LPGs was inscribed in photonic crystal fibre by a low repetition femtosecond laser system. When subjected to bending they were found to be spectrally sensitive to bend orientation and displayed a strong polarisation dependence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we demonstrate the integration of a 3D hydrogel matrix within a hollow core photonic crystal fibre (HC-PCF). In addition, we also show the fluorescence of Cy5-labelled DNA molecules immobilized within the hydrogel formed in two different types of HC-PCF. The 3D hydrogel matrix is designed to bind with the amino groups of biomolecules using an appropriate cross-linker, providing higher sensitivity and selectivity than the standard 2D coverage, enabling a greater number of probe molecules to be available per unit area. The HC-PCFs, on the other hand, can be designed to maximize the capture of fluorescence to improve sensitivity and provide longer interaction lengths. This could enable the development of fibre-based point-of-care and remote systems, where the enhanced sensitivity would relax the constraints placed on sources and detectors. In this paper, we will discuss the formation of such polyethylene glycol diacrylate (PEGDA) hydrogels within a HC-PCF, including their optical properties such as light propagation and auto-fluorescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the state-of-the-art in photonic crystal fiber (PCF) and microstructured polymer optical fiber (mPOF) based mechanical sensing. We first introduce how the unique properties of PCF can benefit Bragg grating based temperature insensitive pressure and transverse load sensing. Then we describe how the latest developments in mPOF Bragg grating technology can enhance optical fiber pressure sensing. Finally we explain how the integration of specialty fiber sensor technology with bio-compatible polymer based micro-technology provides great opportunities for fiber sensors in the field of healthcare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the generation of 42 fs pulses at 1 µm in a completely fiber-integrated format, which are, to the best of our knowledge, the shortest from all-fiber-integrated Yb-doped fiber lasers to date. The ring fiber cavity incorporates anomalous-dispersion, solid-core photonic crystal fiber with low birefringence, which acts as a broadband, in-fiber Lyot filter to facilitate mode locking. The oscillator operates in the stretched-pulse regime under slight normal net cavity dispersion. The cavity generates 4.7 ps long pulses with a spectral bandwidth of 58.2 nm, which are dechirped to 42 fs via a grating pair compressor outside of the cavity. Relative intensity noise (RIN) of the laser is characterized, with the integrated RIN found to be 0.026% in the 3 Hz-250 kHz frequency range.