63 resultados para Silicone elastomer
em Aston University Research Archive
Resumo:
Aqueous semi-solid polymeric gels, such as those based on hydroxyethylcellulose (HEC) and polyacrylic acid (e.g. Carbopol®), have a long history of use in vaginal drug delivery. However, despite their ubiquity, they often provide sub-optimal clinical performance, due to poor mucosal retention and limited solubility for poorly water-soluble actives. These issues are particularly pertinent for vaginal HIV microbicides, since many lead candidates are poorly water-soluble and where a major goal is the development of a coitally independent, once daily gel product. In this study, we report the use of a non-aqueous silicone elastomer gel for vaginal delivery of the HIV-1 entry inhibitor maraviroc. In vitro rheological, syringeability and retention studies demonstrated enhanced performance for silicone gels compared with a conventional aqueous HEC gel, while testing of the gels in the slug model confirmed a lack of mucosal irritancy. Pharmacokinetic studies following single dose vaginal administration of a maraviroc silicone gel in rhesus macaques showed higher and sustained MVC levels in vaginal fluid, vaginal tissue and plasma compared with a HEC gel containing the same maraviroc loading. The results demonstrate that non-aqueous silicone gels have potential as a formulation platform for coitally independent vaginal HIV microbicides.
Resumo:
Background: Heterosexual HIV transmission continues to spread worldwide. Intravaginal rings (IVRs) formulated with antiretroviral drugs hold great promise for HIV prevention in women. IVRs provide the benefit of being coitally-independent and coitally-covert for an extended period. As a proof-of-concept, we tested the in vivo release of progesterone from a silicone elastomer vaginal ring device. Methods: Six female pig-tailed macaques were treated with a GnRH agonist (Lupron) prior to ring placement. Four macaques received a progesterone-loaded silicone ring, and two macaques received a blank silicone ring. Blood, vaginal swabs, CVL, and/or biopsies were collected during ring placement, and after ring removal. Results: The median plasma progesterone levels for macaques with a progesterone IVR were 13,973 pg/ml (day 3), 12,342 pg/ml (day 7), 10,112 pg/ml (day 14), 8445 pg/ml (day 21) and 8061 pg/ml (day 28), with a significant decrease from day 14 to day 21 (P = 0.0286). The median plasma progesterone levels for macaques with a blank IVR were 221±±± ±±88 pg/ml. Macaques with a progesterone IVR had CVL progesterone levels of 20,935 pg/ml (day 7), 6892 pg/ml (day 21) and 11,515 pg/ml (day 28). Macaques with a blank IVR had CVL progesterone levels of 29 �± 13 pg/ml. There were no disturbances to the normal vaginal microflora, and plasma and CVL cytokine analysis did not indicate a proinflammatory response due to ring placement. The vaginal biopsies did not display any pathology following ring removal. Overall, the IVRs were well tolerated without any indication of inflammation or significant changes in the vaginal compartment.
Resumo:
Conventional differential scanning calorimetry (DSC) techniques are commonly used to quantify the solubility of drugs within polymeric-controlled delivery systems. However, the nature of the DSC experiment, and in particular the relatively slow heating rates employed, limit its use to the measurement of drug solubility at the drug's melting temperature. Here, we describe the application of hyper-DSC (HDSC), a variant of DSC involving extremely rapid heating rates, to the calculation of the solubility of a model drug, metronidazole, in silicone elastomer, and demonstrate that the faster heating rates permit the solubility to be calculated under non-equilibrium conditions such that the solubility better approximates that at the temperature of use. At a heating rate of 400°C/min (HDSC), metronidazole solubility was calculated to be 2.16 mg/g compared with 6.16 mg/g at 20°C/min. © 2005 Elsevier B.V. All rights reserved.
Sustained release of the CCR5 inhibitors CMPD167 and maraviroc from vaginal rings in rhesus macaques
Resumo:
Antiretroviral entry inhibitors are now being considered as vaginally administered microbicide candidates for the prevention of the sexual transmission of human immunodeficiency virus. Previous studies testing the entry inhibitors maraviroc and CMPD167 in aqueous gel formulations showed efficacy in the macaque challenge model, although protection was highly dependent on the time period between initial gel application and subsequent challenge. In this paper, we describe the sustained release of maraviroc and CMPD167 from matrix-type silicone elastomer vaginal rings both in vitro and in vivo. Both inhibitors were released continuously during 28 days from rings in vitro at rates of 100 to 2,500 µg/day. In 28-day pharmacokinetic studies in rhesus macaques, the compounds were measured in the vaginal fluid and vaginal tissue; steady-state fluid concentrations were ~10(6)-fold greater than the 50% inhibitory concentrations (IC(50)s) for simian human immunodeficiency virus 162P3 inhibition in macaque lymphocytes in vitro. Plasma concentrations for both compounds were very low. The pretreatment of macaques with Depo-Provera (DP), which is commonly used in macaque challenge studies, was shown to significantly modify the biodistribution of the inhibitors but not the overall amount released. Vaginal fluid and tissue concentrations were significantly decreased while plasma levels increased with DP pretreatment. These observations have implications for designing macaque challenge experiments and also for ring performance during the human female menstrual cycle.
Resumo:
Hydrogels may be described as cross-linked hydrophilic polymers that swell but do not dissolve in water. The production of high water content hydrogels was the subject of investigation. Based upon copolymer compositions that had already achieved commercial success as biomaterials, new monomers were added or substituted in and the effects observed. The addition of N-isopropyl acrylamide to an acrylamide-based composition that had previously been designed to become a contact lens, produced materials that showed smart effects in that the water content showed dependence on the temperature of the hydrating solution. Such thermo-responsive materials have potential uses in drug delivery, ultrafiltration and cell culture surfaces. Proteoglycans in nature have an important role to play in structural support where a highly hydrophilic structure maintains lubricious surfaces. Certain functional groups that impart this hydrophilicity are present in certain sulphonate monomers, Bis(3-sulphopropyl ester) itaconate, dipotassium salt (SPI), 3-Sulphopropyl ester acrylate, potassium salt (SPA) and Sodium 2-(acrylamido)-2-methyl propane sulphonate (NaAMPS). These monomers were incorporated into a HEMA-based copolymer that had been designed initially as a contact lens and the resulting effects examined. Highly hydrophilic materials resulted that showed reduced protein deposition over the neutral core material. It is postulated that a sulphonate group would have a larger number of hydration shells around it than for example methacrylic acid, leading to more dynamic exchange and so reducing the adsorption of biological solutes. A cationic monomer was added to bring back the net anionic nature of the sulphonate hydrogels and the effects studied. Ionic interactions were found to cause a reduction in the water content of the resulting materials as the mobility of the network decreased, leading to stiffer but less extensible materials. The presence of a net dominant charge, whether negative or positive, appeared to act to reduce protein deposition, but increasing equivalence in the amount of both charges served to present a more 'neutral' surface and deposition subsequently increased. The grafting of hydrophilic hydrogel layers onto silicone elastomer was attempted and the results evaluated using dynamic contact angle measurements. Following plasma oxidation to reduce the surface energy barrier to aqueous grafting chemistry, it was found that the wettability of the modified elastomers could be significantly enhanced by such treatment. The SPA-grafted material in particular hinted at an osmotic drive for rehydration that may be exploited in biomaterials.
Resumo:
The present thesis investigates targeted (locally and systemically) delivery of a novel group of inhibitors of enzyme transglutaminases (TGs). TGs are a widely distributed group of enzymes that catalyse the formation of isopeptide bonds between the y-carboxamide group of protein-bound glutamines and the a-amino group of protein-bound lysines or polyamines. The first group of the novel inhibitors tested were the tluorescently labelled inhibitors of Factor XIIIa (FXIIIa). These small, non-toxic inhibitors have the potential to prevent stabilisation of thrombi by FXIIIa and consequently increase the natural rate of thrombolysis, in addition it reduces staphylococcal colonisation of catheters by inhibiting their FXIIIa¬mediated cross-linking to blood clot proteins on the central venous catheter (CVCs) surface. The aim of this work was to incorporate the FXIIIa inhibitor either within coating of polyurethane (PU) catheters or to integrate it into silicone catheters, so as to reduce the incidence of thrombotic occlusion and associated bacterial infection in CVCs. The initial work focused on the incorporation of FXIIIa inhibitors within polymeric coatings of PU catheters. After defining the key characteristics desired for an effective polymeric-coating, polyvinylpyrrolidone (PVP), poly(lactic-co-glycolic acid) (PLGA) or their combination were studies as polymers of choice for coating of the catheters_ The coating was conducted by dip-coating method in a polymer solution containing the inhibitor. Upon incubation of the inhibitor-and polymer-coated strips in buffer, PVP was dissolved instantly, generating fast and significant drug release, whilst PLGA did not dissolve, yielding a slow and an insufficient amount of drug release. Nevertheless, the drug release profile was enhanced upon employing a blend solution of PVP and PLGA. The second part of the study was to incorporate the FXIIIa inhibitor into a silicone elastomer; results demonstrated that FXIIIa inhibitor can be incorporated and released from silicone by using citric acid (CA) and sodium bicarbonate (SB) as additives and the drug release rate can be controlled by the amount of incorporated additives in the silicone matrix. Furthermore, it was deemed that the inhibitor was still biologically active subsequent to being released from the silicone elastomer strips. Morphological analysis confirmed the formation of channels and cracks inside the specimens upon the addition of CA and SB. Nevertheless, the tensile strength, in addition to Young's modulus of silicone elastomer strips, decreased constantly with an increasing amount of amalgamated CA/ SB in the formulations. According to our results, incorporation of FXIIIa inhibitor into catheters and other medical implant devices could offer new perspectives in preventing bio-material associated infections and thrombosis. The use of tissue transglutaminase (T02) inhibitor for treating of liver fibrosis was also investigated. Liver fibrosis is characterized by increased synthesis and decreased degradation of the extracellular matrix (ECM). Transglutaminase-mediated covalent cross-linking is involved in the stabilization of ECM in human liver fibrosis. Thus, TG2 inhibitors may be used to counteract the decreased degradation of the ECM. The potential of a liposome based drug delivery system for site specific delivery of the fluorescent TG2 inhibitor into the liver was investigated; results indicated that the TG2 inhibitor can be successfully integrated into liposomes and delivered to the liver, therefore demonstrating that liposomes can be employed for site-specific delivery of TG2 inhibitors into the liver and TG2 inhibitor incorporating liposomes could offer a new approach in treating liver fibrosis and its end stage disease cirrhosis.
Resumo:
Central venous catheters (CVCs) are being utilized with increasing frequency in intensive care and general medical wards. In spite of the extensive experience gained in their application, CVCs are related to the long-term risks of catheter sheath formation, infection, and thrombosis (of the catheter or vessel itself) during catheterization. Such CVC-related-complications are associated with increased morbidity, mortality, duration of hospitalization, and medical care cost [1]. The present study incorporates a novel group of Factor XIIIa (FXIIIa, plasma transglutaminase) inhibitors into a lubricious silicone elastomer in order to generate an optimized drug delivery system whereby a secondary sustained drug release profile occurs following an initial burst release for catheters and other medical devices. We propose that the incorporation of FXIIIa inhibitors into catheters, stents, and other medical implant devices would reduce the incidence of catheter sheath formation, thrombotic occlusion, and associated staphylococcal infection. This technique could be used as a local delivery system for extended release with an immediate onset of action for other poorly aqueous soluble compounds. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Objectives: This study measured and compared the pharmacokinetics of CMPD167, a small molecule antiretroviral CCR5 inhibitor with potential as an HIV microbicide, following vaginal, rectal and oral administration in rhesus macaques. Methods: Avaginal hydroxyethylcellulose (HEC) gel, a rectal HEC gel, a silicone elastomer matrix-type vaginal ring and an oral solution, each containing CMPD167, were prepared and administered to rhesus macaques pretreated with Depo-Provera. CMPD167 concentrations in vaginal fluid, vaginal tissue (ring only), rectal fluid and blood plasma were quantified by HPLC-mass spectrometry. Results: CMPD167 concentrations measured in rectal fluid, vaginal fluid and blood plasma were highly dependent on both the route of administration and the formulation type. Although rectal and vaginal fluid concentrations were highest when CMPD167 was administered locally (via either gel or ring), lower concentrations of the drug were also measured in these compartments following administration at the remote mucosal site or orally. CMPD167 levels in the vaginal and rectal fluid following oral administration were relatively low compared with local administration. Conclusions: The study provides clear evidence for vaginal-rectal and rectal-vaginal drug transfer pathways and suggests that oral pre-exposure prophylaxis with CMPD167 may be less efficacious at preventing sexual transmission of HIV-1 than topically applied products. ©The Author 2013.
Resumo:
Purpose. To report differences in the incidence of conjunctival epithelial flaps (CEFs) found in a group of neophyte contact wearers using two different silicone hydrogel contact lenses on a daily- and continuous-wear basis during an 18-month period. Methods. Sixty-one subjects were initially examined, and 53 were eligible to participate in the study. Eligible subjects were randomly assigned to wear one of two silicone hydrogel materials, lotrafilcon A or balafilcon A, on a daily- or continuous-wear basis. After an initial screening, subjects were monitored weekly for the first month and then after 3, 6, 12, and IS months. The incidence of CEFs in each of the four contact lens groups was recorded. Results. Five of the 53 subjects enrolled in the study showed bilateral CEFs. A higher incidence of CEFs was found in subjects wearing lotrafilcon A lenses (n = 4) compared to balafilcon A lenses (it = 1) (chi(2) = 4.37, P=0.04). Differences in the incidence of CEFs between subjects wearing lenses on a daily-wear basis (n = 1) versus a continuous-wear basis (it = 4) showed a weak statistical significance (chi(2) = 3.03, P=0.08). Conclusions. Lotrafilcon A lenses were associated with a higher incidence of CEFs than balafilcon A lenses were, and this difference may be attributed to differences in the edge design, material, or modulus of rigidity between the two lens types. Subjects wearing lenses on a daily-wear basis showed fewer adverse events than did subjects wearing lenses on a continuous-wear basis. The longer wearing times of subjects wearing lenses on a continuous-wear basis are likely to exacerbate the incidence of CEFs.
Resumo:
Mock circulation loops are used to evaluate the performance of cardiac assist devices prior to animal and clinical testing. A compressible, translucent silicone ventricle chamber that mimics the exact size, shape and motion of a failing heart is desired to assist in flow visualization studies around inflow cannulae during VAD support. The aim of this study was therefore to design and construct a naturally shaped flexible left ventricle and evaluate its performance in a mock circulation loop. The ventricle shape was constructed by the use of CT images taken from a patient experiencing cardiomyopathic heart failure and used to create a 3D image and subsequent mould to produce a silicone ventricle. Different cardiac conditions were successfully simulated to validate the ventricle performance, including rest, left heart failure and VAD support.
Resumo:
The thesis investigates the ocular response to silicone-hydrogel (SiH) contact lens wear, a relatively new contact lens material that has a higher modulus of rigidity and different surface coating than used in conventional hydrogel materials. The properties of SiH materials differ significantly from conventional hydrogels and, using subjective and objective means of assessment, the thesis examines how these properties affect reflection and biometry, ocular physiology, tear film characteristics, symptomatology, adverse events and complications. A range of standard and newly designed investigative techniques were employed, and latter involving novel imaging techniques, for the objective assessment of physiological changes which occur with contact lens wear. The study is the first to combine these techniques with biochemical analyses of the tear film composition. Forty-seven subjects were fitted with SiH lenses and randomly allocated to one of the two materials currently on the market (Lotrafilcon A or Balafilcon A) on an either daily or continuous wear basis. An additional control group of 14 age-matched non-contact lens wearers were monitored over the same period. Measurements were taken before and 1, 3, 6, 12 and 18 months after initial fitting. The findings reported in this thesis will enable contact lens practitioners and manufacturers to understand further the optical, physiological and biochemical nature of the ocular response to SiH contact lenses and hence facilitate the development of this important generation of contact lens material.
Resumo:
Silicone elastomers are commonly used in the manufacture of single-piece joint replacement implants for the finger joints. However, the survivorship of these implants can be poor, with failure typically occurring from fracture of the stems. The aim of this paper was to investigate the crack growth of medical-grade silicone using pure shear tests. Two medical-grade silicones (C6-180 and Med82-5010-80) were tested. Each sample had a 20 mm crack introduced and was subjected to a sinusoidally varying tensile strain, with a minimum of 0 per cent and a maximum in the range 10 to 77 per cent. Testing was undertaken at a frequency of 10 Hz. At various times during testing, the testing machine was stopped, the number of cycles completed was noted, and the crack length measured. Graphs of crack length against number of cycles were plotted, as well as the crack growth rate against tearing energy. The results show that Med82-5010-80 is more crack resistant than C6-180. Graphs of crack growth rate against tearing energy can be used to predict the failure of these medical-grade elastomers.
Resumo:
Since the initial launch of silicone hydrogel lenses, there has been a considerable broadening in the range of available commercial material properties. The very mobile silicon–oxygen bonds convey distinctive surface and mechanical properties on silicone hydrogels, in which advantages of enhanced oxygen permeability, reduced protein deposition, and modest frictional interaction are balanced by increased lipid and elastic response. There are now some 15 silicone hydrogel material variants available to practitioners; arguably, the changes that have taken place have been strongly influenced by feedback based on clinical experience. Water content is one of the most influential properties, and the decade has seen a progressive rise from lotrafilcon-A (24%) to efrofilcon-A (74%). Moduli have decreased over the same period from 1.4 to 0.3 MPa, but not solely as a result of changes in water content. Surface properties do not correlate directly with water content, and ingenious approaches have been used to achieve desirable improvements (e.g., greater lubricity and lower contact angle hysteresis). This is demonstrated by comparing the hysteresis value of the earliest (lotrafilcon-A, >40°) and most recent (delefilcon-A, <10°) coated silicone hydrogels. Although wettability is important, it is not of itself a good predictor of ocular response because this involves a much wider range of physicochemical and biochemical factors. The interference of the lens with ocular dynamics is complex leading separately to tissue–material interactions involving anterior and posterior lens surfaces. The biochemical consequences of these interactions may hold the key to a greater understanding of ocular incompatibility and end of day discomfort.
Resumo:
Purpose: to evaluate changes in tear metrics and ocular signs induced by six months of silicone-hydrogel contact lens wear and the difference in baseline characteristics between those who successfully continued in contact lens wear compared to those that did not. Methods: Non-invasive Keratograph, Tearscope and fluorescein tear break-up times (TBUTs), tear meniscus height, bulbar and limbal hyperaemia, lid-parallel conjunctival folds (LIPCOF), phenol red thread, fluorescein and lissamine-green staining, and lid wiper epitheliopathy were measured on 60 new contact lens wearers fitted with monthly silicone-hydrogels (average age 36 ± 14 years, 40 females). Symptoms were evaluated by the Ocular Surface Disease Index (OSDI). After six months full time contact lens wear the above metrics were re-measured on those patients still in contact lens wear (n= 33). The initial measurements were also compared between the group still wearing lenses after six months and those who had ceased lens wear (n= 27). Results: There were significant changes in tear meniscus height (p= 0.031), bulbar hyperaemia (p= 0.011), fluorescein TBUT (p= 0.027), corneal (p= 0.007) and conjunctival (p= 0.009) staining, LIPCOF (p= 0.011) and lid wiper epitheliopathy (p= 0.002) after six months of silicone-hydrogel wear. Successful wearers had a higher non-invasive (17.0 ± 8.2. s vs 12.0 ± 5.6. s; p= 0.001) and fluorescein (10.7 ± 6.4. s vs 7.5 ± 4.7. s; p= 0.001) TBUT than drop-outs, although OSDI (cut-off 4.2) was also a strong predictor of success. Conclusion: Silicone-hydrogel lenses induced significant changes in the tear film and ocular surface as well as lid margin staining. Wettability of the ocular surface is the main factor affecting contact lens drop-out. © 2013 British Contact Lens Association.