23 resultados para Roller bearings

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research initiates a study of the mechanics of four roll plate bending and provides a methodology to investigate the process experimentally. To carry out the research a suitable model bender was designed and constructed. The model bender was comprehensively instrumented with ten load cells, three torquemeters and a tachometer. A rudimentary analysis of the four roll pre-bending mode considered the three critical bending operations. The analysis also gave an assessment of the model bender capacity for the design stage. The analysis indicated that an increase in the coefficient of friction in the contact region of the pinch rolls and the plate would reduce the pinch resultant force required to end a plate to a particular bend radius. The mechanisms involved in the four roll plate bending process were investigated and a mathematical model evolved to determine the mechanics of four roll thin plate bending. A theoretical and experimental investigation was conducted for the bending of HP30 aluminium plates in both single and multipass bending modes. The study indicated that the multipass plate bending mechanics of the process varied according to the number of bending passes executed and the step decrement of the anticipated finished bend radius in any two successive passes (i.e. the bending route). Experimental results for single pass bending indicated that the rollers normally exert a higher bending load for the steady-continous bending with the pre-inactive side roll oper?tive. For the pre-bending mode and the steady-continous bending mode with the pre-active side roll operative, the former exerted the higher loads. The single pass results also indicated that the force on the side roll, the torque and power steadily increased as the anticipated bend radius decreased. Theoretical predictions for the plate internal resistance to accomplish finished bend radii of between 2500mm and 500mm for multipass bending HP30 aluminium plates, suggested that there was a certain bending route which would effectively optimise the bender capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes an investigation which was carried out under the Interdisciplinary Higher Degres (IHD) Scheme of The University of Aston in Birmingham. The investigation, which involved joint collaboration between the IHD scheme, the Department of Mechanical Engineering, and G.E.C. Turbine Generators Limited, was concerned with hydrostatic bearing characteristics and of how hydrostatic bearings could be used to enable turbine generator rotor support impedances to be controlled to give an improved rotor dynamic response. Turbine generator rotor critical speeds are determined not only by the mass and flexibility of the rotor itself, which are relatively easily predicted, but also by the dynamic characteristics of the bearing oil film, pedestal, and foundations. It is because of the difficulty in accurately predicting the rotor support characteristics that the designer has a problem in ensuring that a rotor's normal running speed is not close to one of its critical speeds. The consequence of this situation is that some rotors do have critical speeds close to their normal running speed and the resulting high levels of vibration cause noise, high rotor stresses, and a shortening of bearing life. A combined theoretical and experimental investigation of the effects of mounting the normal rotor journal bearing in a hydrostatic bearing was carried out. The purpose of the work was to show that by changing the oil flow resistance offered by capillaries connecting accumulators to the hydrostatic bearing, the overall rotor support characteristics could be tuned to enable rotor critical speeds to be moved at will. Testing of a combined journal and hydrostatic bearing has confirmed the theory of its operation and a theoretical study of a full size machine showed that its critical speed could be moved by over 350 rpm and that its rotor vibration at running speed could be reduced by 80%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study some common types of Rolling Bearing vibrations are analysed in depth both theoretically and experimentally. The study is restricted to vibrations in the radial direction of bearings having pure radial load and a positive radial clearance. The general vibrational behaviour of such bearings has been investigated with respect to the effects of varying compliance, manufacturing tolerances and the interaction between the bearing and the machine structure into which it is fitted. The equations of motion for a rotor supported by a bearing in which the stiffness varies with cage position has been set up and examples of solutions,obtained by digital simulation. is given. A method to calculate amplitudes and frequencies of vibration components due to out of roundness of the inner ring and varying roller diameters has been developed. The results from these investigations have been combined with a theory for bearing/machine frame interaction using mechanical impedance technique, thereby facilitating prediction of the vibrational behaviour of the whole set up. Finally. the effects of bearing fatigue and wear have been studied with particular emphasis on the use of vibration analysis for condition monitoring purposes. A number of monitoring methods have been tried and their effectiveness discussed. The experimental investigation was carried out using two purpose built rigs. For the purpose of analysis of the experimental measurements a digital mini computer was adapted for signal processing and a suite of programs was written. The program package performs several of the commonly used signal analysis processes and :include all necessary input and output functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible evaporation of lubricant in fluid film bearings has been investigated theoretically and by experiment using a radial flow hydrostatic bearing supplied with liquid refrigerant R114. Good correlation between measured and theoretical values was obtained using a bespoke computational fluid dynamic model in which the flow was assumed to be laminar and adiabatic. The effects of viscous dissipation and vapour generation within the fluid film are fully accounted for by applying a fourth order Runge-Kutta routine to satisfy the radial and filmwise transverse constraints of momentum, energy and mass conservation. The results indicate that the radial velocity profile remains parabolic while the flow remains in the liquid phase and that the radial rate of enthalpy generation is then constant across the film at a given radius. The results also show that evaporation will commence at a radial location determined by geometry and flow conditions and in fluid layers adjacent to the solid boundaries. Evaporation is shown to progress in the radial direction and the load carrying capacity of such a bearing is reduced significantly. Expressions for the viscosity of the liquid/vapour mixture found in the literature survey have not been tested against experimental data. A new formulation is proposed in which the suitable choice of a characteristic constant yields close representation to any of these expressions. Operating constraints imposed by the design of the experimental apparatus limited the extent of the surface over which evaporation could be obtained, and prevented clear identification of the most suitable relationship for the viscosity of the liquid/vapour mixture. The theoretical model was extended to examine the development of two phase flow in a rotating shaft face seal of uniform thickness. Previous theoretical analyses have been based on the assumption that the radial velocity profile of the flow is always parabolic, and that the tangential component of velocity varies linearly from the value at the rotating surface, to zero at the stationary surface. The computational fluid dynamic analysis shows that viscous shear and dissipation in the fluid adjacent to the rotating surface leads to developing evaporation with a consequent reduction in tangential shear forces. The tangential velocity profile is predicted to decay rapidly through the film, exhibiting a profile entirely different to that assumed by previous investigators. Progressive evaporation takes place close to the moving wall and does not occur completely at a single radial location, as has been claimed in earlier work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic levitation bearings eliminate friction, wear and the need for lubrication and so have high speed capability and potential for vibration control. One noteworthy development in the realm of magnetic levitation is the self-bearing or bearingless motor - an electromagnetic machine that supports its own rotor by way of magnetic forces generated by windings on its stator. Accordingly, various winding schemes have been proposed to accomplish the task of force production. This thesis proposes a novel concept of winding based on a bridge connection for polyphase self-bearing rotating electrical machines with the following advantages: • the connection uses a single set of windings and thus power loss is relatively low when compared with self-bearing motors with conventional dual set of windings. • the motor and levitation controls are segregated such that only one motor inverter is required for the normal torque production and levitation forces are produced by using auxiliary power supplies of relatively low current and voltage rating. The usual way of controlling the motor is retained. • there are many variant winding schemes to meet special needs. • independent power supplies for levitation control offer redundancy for fault tolerance. This thesis dwells specifically on the conceptual design and implementation of the proposed single set of windings scheme. The new connection has been verified to exhibit characteristics of a self-bearing motor via coupled-field finite element analysis: results are crosschecked analytically. Power loss and other aspects such as cost, design implementation are compared to support the newly proposed connection as a potential alternative to present designs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Jeffcott rotor consists of a disc at the centre of an axle supported at its end by bearings. A bolted Jeffcott rotor is formed by two discs, each with a shaft on one side. The discs are held together by spring loaded bolts near the outer edge. When the rotor turns there is tendency for the discs to separate on one side. This effect is more marked if the rotor is unbalanced, especially at resonance speeds. The equations of motion of the system have been developed with four degrees of freedom to include the rotor and bearing movements in the respective axes. These equations which include non-linear terms caused by the rotor opening, are subjected to external force such from rotor imbalance. A simulation model based on these equations was created using SIMULINK. An experimental test rig was used to characterise the dynamic features. Rotor discs open at a lateral displacement of the rotor of 0.8 mm. This is the threshold value used to show the change of stiffness from high stiffness to low stiffness. The experimental results, which measure the vibration amplitude of the rotor, show the dynamic behaviour of the bolted rotor due to imbalance. Close agreement of the experimental and theoretical results from time histories, waterfall plots, pseudo-phase plots and rotor orbit plot, indicated the validity of the model and existence of the non-linear jump phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent developments in aerostatic thrust bearings have included: (a) the porous aerostatic thrust bearing containing a porous pad and (b) the inherently compensated compliant surface aerostatic thrust bearing containing a thin elastomer layer. Both these developments have been reported to improve the bearing load capacity compared to conventional aerostatic thrust bearings with rigid surfaces. This development is carried one stage further in a porous and compliant aerostatic thrust bearing incorporating both a porous pad and an opposing compliant surface. The thin elastomer layer forming the compliant surface is bonded to a rigid backing and is of a soft rubber like material. Such a bearing is studied experimentally and theoretically under steady state operating conditions. A mathematical model is presented to predict the bearing performance. In this model is a simplified solution to the elasticity equations for deflections of the compliant surface. Account is also taken of deflections in the porous pad due to the pressure difference across its thickness. The lubrication equations for flow in the porous pad and bearing clearance are solved by numerical finite difference methods. An iteration procedure is used to couple deflections of the compliant surface and porous pad with solutions to the lubrication equations. Comparisons between experimental results and theoretically predicted bearing performance are in good agreement. However these results show that the porous and compliant aerostatic thrust bearing performance is lower than that of a porous aerostatic thrust bearing with a rigid surface in place of the compliant surface. This discovery is accounted to the recess formed in the bearing clearance by deflections of the compliant surface and its effect on flow through the porous pad.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well established that hydrodynamic journal bearings are responsible for self-excited vibrations and have the effect of lowering the critical speeds of rotor systems. The forces within the oil film wedge, generated by the vibrating journal, may be represented by displacement and velocity coefficient~ thus allowing the dynamical behaviour of the rotor to be analysed both for stability purposes and for anticipating the response to unbalance. However, information describing these coefficients is sparse, misleading, and very often not applicable to industrial type bearings. Results of a combined analytical and experimental investigation into the hydrodynamic oil film coefficients operating in the laminar region are therefore presented, the analysis being applied to a 120 degree partial journal bearing having a 5.0 in diameter journal and a LID ratio of 1.0. The theoretical analysis shows that for this type of popular bearing, the eight linearized coefficients do not accurately describe the behaviour of the vibrating journal based on the theory of small perturbations, due to them being masked by the presence of nonlinearity. A method is developed using the second order terms of Taylor expansion whereby design charts are provided which predict the twentyeight force coefficients for both aligned, and for varying amounts of journal misalignment. The resulting non-linear equations of motion are solved using a modified Newton-Raphson method whereby the whirl trajectories are obtained, thus providing a physical appreciation of the bearing characteristics under dynamically loaded conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The turbocharging of diesel engines has led to increase in temperature, load and corrosive attack of plain bearings. To meet these requirements, overlay plated aluminium alloys are now preferred. Currently, lead-tin alloys are deposited using a zincate layer and nickel strike, as intermediate stages in the process. The nickel has undesirable seizure characteristics and the zincate can given rise to corrosion problems. Consequently, brush plating allows the possible elimination of these stages and a decrease in process together with greater automation. The effect of mode application, on the formation of zincate films, using film growth weight measurements, potential-time studies, peel adhesion testing and Scanning Electron Microscopy was studied, for both SIC and AS15 aluminium alloys. The direct plating of aluminium was also successfully achieved. The results obtained indicate that generally, although lower adhesion resulted when a brush technique was used, satisfactory adhesion for fatigue testing was achieved. Both lead-tin and tin-cobalt overlays were examined and a study of the parameters governing brush plating were carried out using various electrolytes. An experimentally developed small scale rig, was used to produce overlay plated bearings that were fatigue tested until failure. The bearings were then examined and an analysis of the failure mechanisms undertaken. The results indicated that both alloy systems are of the regular codeposition type. Tin-cobalt overlays were superior to conventional lead-tin overlays and remained in good condition, although the lining (substrate) failed. Brush plated lead-tin was unsatisfactory. Sufficient understanding has now been gained, to enable a larger scale automated plant to be produced. This will allow a further study of the technique to be carried out, on equipment that more closely resembles that of a full scale production process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bearings in the air motors of modern jet aircraft engines must operate dry in hostile conditions at temperatures up to 500° C, where the thrust races in the actuators operate at temperatures up to 300° C. One of the few metallurgical combinations which can function efficiently under these conditions is martensitic stainless steel on tungsten carbide. The work described was initiated to isolate the wear mechanisms of two such steels in contact with tungsten carbide at temperatures up to 500° C. Experiments were carried out on angular contact bearings similar to these used in service, where both rolling and sliding is present and also for pure sliding conditions using a pin-on-disc apparatus. Wear measurements of the bearings were obtained with wear rates, friction and surface temperatures from the pin-on-disc machine for a series of loads and speeds. Extensive X-ray diffraction analysis was carried out on the wear debris, with also S.E.M. analysis and hardness tests on the worn surfaces along with profilometry measurements of the disc. The oxidational parameters of the steel were obtained from measurements of oxide growth rates by ellipsometry. Three distinct mechanisms of wear were established and the latter two were found to be present in both configurations. These involve an oxidational-abrasive mechanism at loads below 40 N with pin surface temperatures up to about 300 °C, with the mechanism changing to severe wear for higher loads. As the temperature increases a third wear mechanism appears due to transfer of relatively soft oxide films to the steel surface reducing the wear rate. Theoretical K factors were derived and compared with experimental values which were found to be in good agreement for the severe wear mechanism. The pin-on-disc experiments may be useful as a screening test for material selection, without the considerable cost of producing the angular contact bearings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous work has indicated the presence of collapsing and structured soils in the surface layers underlying Sana's, the capital of Yemen Republic. This study set out initially to define and, ultimately, to alleviate the problem by investigating the deformation behaviour of these soils through both field and laboratory programmes. The field programme was carried out in Sana'a while the laboratory work consisted of two parts, an initial phase at Sana's University carried out in parallel with the field programme on natural and treated soils and the major phase at Aston University carried out on natural, destructured and selected treated soils. The initial phase of the laboratory programme included classification, permeability, and single (collapsing) and double oedometer tests while the major phase, at Aston, was extended to also include extensive single and double oedometer tests, Scanning Electron Microscopy and Energy Dispersive Spectrum analysis. The mechanical tests were carried out on natural and destructed samples at both the in situ and soaked moisture conditions. The engineering characteristics of the natural intact, field-treated and laboratory destructured soils are reported, including their collapsing potentials which show them to be weakly bonded with nil to severe collapsing susceptibility. Flooding had no beneficial effect, with limited to moderate improvement being achieved by preloading and roller compaction, while major benefits were achieved from deep compaction. From these results a comparison between the soil response to the different treatments and general field remarks were presented. Laboratory destructuring reduced the stiffness of the soils while their compressibility was increasing. Their collapsing and destructuring mechanisms have been examined by studying the changes in structure accompanying these phenomena. Based on the test results for the intact and the laboratory destructured soils, a simplified framework has been developed to represent the collapsing and deformation behaviour at both the partially saturated and soaked states, and comments are given on its general applicability and limitations. It has been used to evaluate all the locations subjected to field treatment. It provided satisfactory results for the deformation behaviour of the soils destructed by field treatment. Finally attention is drawn to the design considerations together with the recommendations for the selection of potential improvement techniques to be used for foundation construction on the particular soils of the Sana's region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluids used in hydraulic systems inevitably contain large numbers of small, solid particles, a phenomenon known as 'fluid contamination'. Particles enter a hydraulic system from the environment, and are generated within it by processes of wear. At the same time, particles are removed from the system fluid by sedimentation and in hydraulic filters. This thesis considers the problems caused by fluid contamination, as they affect a manufacturer of axial piston pumps. The specific project aim was to investigate methods of predicting or determining the effects of fluid contamination on this type of pump. The thesis starts with a theoretical analysis of the contaminated lubrication of a slipper-pad bearing. Statistical methods are used to develop a model of the blocking, by particles, of the control capillaries used in such bearings. The results obtained are compared to published, experimental data. Poor correlation between theory and practice suggests that more research is required in this area before such theoretical analysis can be used in industry. Accelerated wear tests have been developed in the U.S.A. in an attempt to predict pump life when operating on contaminated fluids. An analysis of such tests shows that reliability data can only be obtained from extensive test programmes. The value of contamination testing is suggested to be in determining failure modes, and in identifying those pump components which are susceptible to the effects of contamination. A suitable test is described, and the results of a series of tests on axial piston pumps are presented and discussed. The thesis concludes that pump reliability data can only be obtained from field experience. The level of confidence which can be placed in results from normal laboratory testing is shown to be too low for the data to be of real value. Recommendations are therefore given for the ways in which service data should be collected and analysed.