13 resultados para Remote Centre-of-Motion (RCM)
em Aston University Research Archive
Resumo:
We sought to determine the extent to which red–green, colour–opponent mechanisms in the human visual system play a role in the perception of drifting luminance–modulated targets. Contrast sensitivity for the directional discrimination of drifting luminance–modulated (yellow–black) test sinusoids was measured following adaptation to isoluminant red–green sinusoids drifting in either the same or opposite direction. When the test and adapt stimuli drifted in the same direction, large sensitivity losses were evident at all test temporal frequencies employed (1–16 Hz). The magnitude of the loss was independent of temporal frequency. When adapt and test stimuli drifted in opposing directions, large sensitivity losses were evident at lower temporal frequencies (1–4 Hz) and declined with increasing temporal frequency. Control studies showed that this temporal–frequency–dependent effect could not reflect the activity of achromatic units. Our results provide evidence that chromatic mechanisms contribute to the perception of luminance–modulated motion targets drifting at speeds of up to at least 32°s-1. We argue that such mechanisms most probably lie within a parvocellular–dominated cortical visual pathway, sensitive to both chromatic and luminance modulation, but only weakly selective for the direction of stimulus motion.
Resumo:
Free Paper Sessions Design. Retrospective analysis. Purpose. To assess the prevalence of center-involving diabetic macular oedema (CIDMO) and risk factors. Methods. Retrospective review of patients who were screen positive for maculopathy (M1) during 2010 in East and North Birmingham. The CIDMO was diagnosed by qualitative identification of definite foveal oedema on optical coherence tomography (OCT). Results. Out of a total of 15,234 patients screened, 1194 (7.8%) were screen positive for M1 (64% bilateral). A total of 137 (11.5% of M1s) were diagnosed with macular oedema after clinical assessment. The OCT results were available for 123/137; 69 (56.1%) of these had CI-DMO (30 bilateral) which is 0.5% of total screens and 5.8% of those screen positive for M1. In those with CIDMO 60.9% were male and 63.8% Caucasian; 90% had type 2 diabetes and mean diabetes duration was 20 years (SD 9.7, range 2-48). Mean HbA1c was 8.34%±1.69, with 25% having an HbA1c =9%. Furthermore, 62% were on insulin, 67% were on antihypertensive therapy, and 64% were on a cholesterol-lowering drug. A total of 37.7% had an eGFR between 30% and 60% and 5.8% had eGFR <30. The only significant difference between the CIDMO and non-CIDMO group was mean age (67.83±12.26 vs 59.69±15.82; p=0.002). A total of 65.2% of those with CIDMO also had proliferative or preproliferative retinopathy in the worst eye and 68.1% had subsequently been treated with macular laser at the time of data review. Conclusions. The results show that the prevalence of CIDMO in our diabetic population was 0.5%. A significant proportion of macula oedema patients were found to have type 2 diabetes with long disease duration, suboptimal glycemic and hypertensive control, and low eGFR. The data support that medical and diabetic review of CIDMO patients is warranted particularly in the substantial number with poor glycemic control and if intravitreal therapies are indicated.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Electromyography readings (EMGs) from quadriceps of fifteen subjects were recorded during whole body vibration treatment at different frequencies (10-50 Hz). Additional electrodes were placed on the patella to monitor the occurrence of motion artifact, triaxial accelerometers were placed onto quadriceps to monitor motion. Signal spectra revealed sharp peaks corresponding to vibration frequency and its harmonics, in accordance with the accelerometer data. EMG total power was compared to that associated with vibration harmonics narrow bands, before and during vibration. On average, vibration associated power resulted in only 3% (±0.9%) of the total power prior to vibration and 29% (±13.4%) during vibration. Often, studies employ surface EMG to quantitatively evaluate vibration evoked muscular activity and to set stimulation frequency. However, previous research has not accounted for motion artifacts. The data presented in this study emphasize the need for the removal of motion artifacts, as they consistently affect RMS estimation, which is often used as a concise muscle activity index during vibrations. Such artifacts, rather unpredictable in amplitude, might be the cause of large inter-study differences and must be eliminated before analysis. Motion artifact filtering will contribute to thorough and precise interpretation of neuromuscular response to vibration treatment. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
Accurate measurement of intervertebral kinematics of the cervical spine can support the diagnosis of widespread diseases related to neck pain, such as chronic whiplash dysfunction, arthritis, and segmental degeneration. The natural inaccessibility of the spine, its complex anatomy, and the small range of motion only permit concise measurement in vivo. Low dose X-ray fluoroscopy allows time-continuous screening of cervical spine during patient's spontaneous motion. To obtain accurate motion measurements, each vertebra was tracked by means of image processing along a sequence of radiographic images. To obtain a time-continuous representation of motion and to reduce noise in the experimental data, smoothing spline interpolation was used. Estimation of intervertebral motion for cervical segments was obtained by processing patient's fluoroscopic sequence; intervertebral angle and displacement and the instantaneous centre of rotation were computed. The RMS value of fitting errors resulted in about 0.2 degree for rotation and 0.2 mm for displacements. © 2013 Paolo Bifulco et al.
Resumo:
Blurred edges appear sharper in motion than when they are stationary. We proposed a model of this motion sharpening that invokes a local, nonlinear contrast transducer function (Hammett et al, 1998 Vision Research 38 2099-2108). Response saturation in the transducer compresses or 'clips' the input spatial waveform, rendering the edges as sharper. To explain the increasing distortion of drifting edges at higher speeds, the degree of nonlinearity must increase with speed or temporal frequency. A dynamic contrast gain control before the transducer can account for both the speed dependence and approximate contrast invariance of motion sharpening (Hammett et al, 2003 Vision Research, in press). We show here that this model also predicts perceived sharpening of briefly flashed and flickering edges, and we show that the model can account fairly well for experimental data from all three modes of presentation (motion, flash, and flicker). At moderate durations and lower temporal frequencies the gain control attenuates the input signal, thus protecting it from later compression by the transducer. The gain control is somewhat sluggish, and so it suffers both a slow onset, and loss of power at high temporal frequencies. Consequently, brief presentations and high temporal frequencies of drift and flicker are less protected from distortion, and show greater perceptual sharpening.
Resumo:
DDevelopmental dyslexia is a reading disorder associated with impaired postural control. However, such deficits are also found in attention deficit hyperactivity disorder (ADHD), which is present in a substantial subset of dyslexia diagnoses. Very few studies of balance in dyslexia have assessed ADHD symptoms, thereby motivating the hypothesis that such measures can account for the group differences observed. In this study, we assessed adults with dyslexia and similarly aged controls on a battery of cognitive, literacy and attention measures, alongside tasks of postural stability. Displacements of centre of mass to perturbations of posture were measured in four experimental conditions using digital optical motion capture. The largest group differences were obtained in conditions where cues to the support surface were reduced. Between-group differences in postural sway and in sway variability were largely accounted for by co-varying hyperactivity and inattention ratings, however. These results therefore suggest that postural instability in dyslexia is more strongly associated with symptoms of ADHD than to those specific to reading impairment.
Resumo:
Degeneration of the older parts of foliose lichen thalli often lead to the formation of a space or 'window' in the centre of the colonies. The percentage of thalli of different size which exhibited 'windows' was studied in twenty saxicolous lichen populations in south Gwynedd, Wales. The proportion of thalli with 'windows' increased with thallus size. The size class at which 50% and 100% of thalli exhibited 'windows' varied between populations. Differences between populations were not correlated with distance from the sea, aspect, slope or porosity of the substrate or the total number of lichen species present. However, a higher percentage of smaller thalli had 'windows' on rock surfaces with a greater lichen cover. There were no significant differences in the levels of Ca, Mg, Cu or Zn in large (>4 cm) and small (<2 cm) Parmelia conspersa (Ehrh. ex Ach.) Ach. thalli or in the centres and marginal lobes of these thalli. The concentration of ribitol, arabitol and mannitol was significantly reduced in the centre of large thalli compared with the margin of large thalli and the centre of small thalli. However, carbohydrate levels were similar in the centre of large thalli and the margin of small thalli. The data suggest that loss of the thallus centre is a degenerative process related to thallus size. In the field, the formation of 'windows' may be related to the intensity of competition on a substrate. Central degeneration was not associated with a deficiency or an accumulation of Ca, Mg, Cu and Zn in the thallus centre. However, degeneration may be associated with a reduction in carbohydrates in the centre compared with the marginal lobes.
Resumo:
A Jeffcott rotor consists of a disc at the centre of an axle supported at its end by bearings. A bolted Jeffcott rotor is formed by two discs, each with a shaft on one side. The discs are held together by spring loaded bolts near the outer edge. When the rotor turns there is tendency for the discs to separate on one side. This effect is more marked if the rotor is unbalanced, especially at resonance speeds. The equations of motion of the system have been developed with four degrees of freedom to include the rotor and bearing movements in the respective axes. These equations which include non-linear terms caused by the rotor opening, are subjected to external force such from rotor imbalance. A simulation model based on these equations was created using SIMULINK. An experimental test rig was used to characterise the dynamic features. Rotor discs open at a lateral displacement of the rotor of 0.8 mm. This is the threshold value used to show the change of stiffness from high stiffness to low stiffness. The experimental results, which measure the vibration amplitude of the rotor, show the dynamic behaviour of the bolted rotor due to imbalance. Close agreement of the experimental and theoretical results from time histories, waterfall plots, pseudo-phase plots and rotor orbit plot, indicated the validity of the model and existence of the non-linear jump phenomenon.
Resumo:
This thesis reports a detailed investigation of the micromechanics of agglomerate behaviour under free-fall impact, double (punch) impact and diametrical compression tests using the simulation software TRUBAL. The software is based on the discrete element method (DEM) which incorporates the Newtonian equations of motion and contact mechanics theory to model the interparticle interactions. Four agglomerates have been used: three dense (differing in interface energy and contact density) and one loose. Although the simulated agglomerates are relatively coarse-grained, the results obtained are in good agreement with laboratory test results reported in the literature. The computer simulation results show that, in all three types of test, the loose agglomerate cannot fracture as it is unable to store sufficient elastic energy. Instead, it becomes flattened for low loading-rates and shattered or crushed at higher loading-rates. In impact tests, the dense agglomerates experience only local damage at low impact velocities. Semi-brittle fracture and fragmentation are produced over a range of higher impact velocities and at very high impact velocities shattering occurs. The dense agglomerates fracture in two or three large fragments in the diametrical compression tests. Local damage at the agglomerate-platen interface always occurs prior to fracture and consists of local bond breakage (microcrack formation) and local dislocations (compaction). The fracture process is dynamic and much more complex than that suggested by continuum fracture mechanics theory. Cracks are always initiated from the contact zones and propagate towards the agglomerate centre. Fracture occurs a short time after the start of unloading when a fracture crack "selection" process takes place. The detailed investigation of the agglomerate damage processes includes an examination of the evolution of the fracture surface. Detailed comparisons of the behaviour of the same agglomerate in all three types of test are presented. The particle size distribution curves of the debris are also examined, for both free-fall and double impact tests.
Resumo:
A preliminary study by Freeman et al (1996b) has suggested that when complex patterns of motion elicit impressions of 2-dimensionality, odd-item-out detection improves given targets can be differentiated on the basis of surface properties. Their results can be accounted for, it if is supposed that observers are permitted efficient access to 3-D surface descriptions but access to 2-D motion descriptions is restricted. To test the hypothesis, a standard search technique was employed, in which targets could be discussed on the basis of slant sign. In one experiment, slant impressions were induced through the summing of deformation and translation components. In a second theory were induced through the summing of shear and translation components. Neither showed any evidence of efficient access. A third experiment explored the possibility that access to these representations may have been hindered by a lack of grouping between the stimuli. Attempts to improve grouping failed to produce convincing evidence in support of life. An alternative explanation is that complex patterns of motion are simply not processed simultaneously. Psychophysical and physiological studies have, however, suggested that multiple mechanisms selective for complex motion do exist. Using a subthreshold summation technique I found evidence supporting the notion that complex motions are processed in parallel. Furthermore, in a spatial summation experiment, coherence thresholds were measured for displays containing different numbers of complex motion patches. Consistent with the idea that complex motion processing proceeds in parallel, increases in the number of motion patches were seen to decrease thresholds, both for expansion and rotation. Moreover, the rates of decrease were higher than those typically expected from probability summation, thus implying mechanisms are available, which can pool signals from spatially distinct complex motion flows.
Resumo:
Background/aims: Retinal screening programmes in England and Scotland have similar photographic grading schemes for background (non-proliferative) and proliferative diabetic retinopathy, but diverge over maculopathy. We looked for the most cost-effective method of identifying diabetic macular oedema from retinal photographs including the role of automated grading and optical coherence tomography, a technology that directly visualises oedema. Methods: Patients from seven UK centres were recruited. The following features in at least one eye were required for enrolment: microaneurysms/dot haemorrhages or blot haemorrhages within one disc diameter, or exudates within one or two disc diameters of the centre of the macula. Subjects had optical coherence tomography and digital photography. Manual and automated grading schemes were evaluated. Costs and QALYs were modelled using microsimulation techniques. Results: 3540 patients were recruited, 3170 were analysed. For diabetic macular oedema, England's scheme had a sensitivity of 72.6% and specificity of 66.8%; Scotland 's had a sensitivity of 59.5% and specificity of 79.0%. When applying a ceiling ratio of £30 000 per quality adjusted life years (QALY) gained, Scotland's scheme was preferred. Assuming automated grading could be implemented without increasing grading costs, automation produced a greater number of QALYS for a lower cost than England's scheme, but was not cost effective, at the study's operating point, compared with Scotland's. The addition of optical coherence tomography, to each scheme, resulted in cost savings without reducing health benefits. Conclusions: Retinal screening programmes in the UK should reconsider the screening pathway to make best use of existing and new technologies.