11 resultados para PLATINUM(II) COMPLEXES

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The whole set of the nickel(II) complexes with no derivatized edta-type hexadentate ligands has been investigated from their structural and electronic properties. Two more complexes have been prepared in order to complete the whole set: trans(O5)-[Ni(ED3AP)]2- and trans(O5O6)-[Ni(EDA3P)]2- complexes. trans(O5) geometry has been verified crystallographically and trans(O5O6) geometry of the second complex has been predicted by the DFT theory and spectral analysis. Mutual dependance has been established between: the number of the five-membered carboxylate rings, octahedral/tetrahedral deviation of metal-ligand/nitrogen-neighbour-atom angles and charge-transfer energies (CTE) calculated by the Morokuma’s energetic decomposition analysis; energy of the absorption bands and HOMO–LUMO gap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper(II) complexes of some pyridine-2-carboxamidrazones have been prepared and characterized. The crystal structures of the copper complex cis-[dichloro(N1-2-acetylthiophene-pyridine-2-carboxamidrazone) copper(II)] 8a and one of the free ligands, viz. {(p-chloro-2-thioloxy-benzylidine-pyridine-2-carboxamidrazone)} 6, have been determined. The former shows a highly distorted square planar geometry around copper, with weak intermolecular coordination from the thiophenyl sulfur resulting in a stacking arrangement in the crystal lattice. The in vitro activities of the synthesized compounds against the malarial parasite Plasmodium falciparum are reported for the first time, which clearly shows the advantage of copper complexation and the requirement of four coordinate geometry around copper as some of the key structural features for designing such metal-based antimalarials. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper(II) complexes of hexadentate ethylenediaminetetracarboxylic acid type ligands Heda3p and Heddadp (Heda3p = ethylenediamine-N-acetic-N,N',N'-tri-3-propionic acid; H eddadp = ethylenediamine-N,N'-diacetic-N,N'-di-3- propionic acid) have been prepared. An octahedral trans(O) geometry (two propionate ligands coordinated in axial positions) has been established crystallographically for the Ba[Cu(eda3p)]·8HO compound, while Ba[Cu(eddadp)]·8HO is proposed to adopt a trans(O ) geometry (two axial acetates) on the basis of density functional theory calculations and comparisons of IR and UV-vis spectral data. Experimental and computed structural data correlating similar copper(II) chelate complexes have been used to better understand the isomerism and departure from regular octahedral geometry within the series. The in-plane O-Cu-N chelate angles show the smallest deviation from the ideal octahedral value of 90°, and hence the lowest strain, for the eddadp complex with two equatorial ß-propionate rings. A linear dependence between tetragonality and the number of five-membered rings has been established. A natural bonding orbital analysis of the series of complexes is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The O–O–N–N–O-type pentadentate ligands H3ed3a, H3pd3a and H3pd3p (H3ed3a stands ethylenediamine-N,N,N′-triacetic acid; H3pd3a stands 1,3-propanediamine-N,N,N′-triacetic acid and H3pd3p stands 1,3-propanediamine-N,N,N′-tri-3-propionic acid) and the corresponding novel octahedral or square-planar/trigonal-bipyramidal copper(II) complexes have been prepared and characterized. H3ed3a, H3pd3a and H3pd3p ligands coordinate to copper(II) ion via five donor atoms (three deprotonated carboxylate atoms and two amine nitrogens) affording octahedral in case of ed3a3− and intermediate square-pyramidal/trigonal-bipyramidal structure in case of pd3a3− and pd3p3−. A six coordinate, octahedral geometry has been established crystallographically for the [Mg(H2O)6][Cu(ed3a)(H2O)]2 · 2H2O complex and five coordinate square-pyramidal for the [Mg(H2O)5Cu(pd3a)][Cu(pd3a)] · 2H2O. Structural data correlating similar chelate Cu(II) complexes have been used for the better understanding the pathway: octahedral → square-pyramidal ↔ trigonal- bipyramid geometry. An extensive configuration analysis is discussed in relation to information obtained for similar complexes. The infra-red and electronic absorption spectra of the complexes are discussed in comparison with related complexes of known geometries. Molecular mechanics and density functional theory (DFT) programs have been used to model the most stable geometric isomer yielding, at the same time, significant structural data. The results from density functional studies have been compared with X-ray data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of manganese(II) [Mn(L)] and manganese(III) [Mn(L)(X)] (X = ClO4, OAc, NCS, N3, Cl, Br and I) complexes have been synthesized from Schiff base ligands N,N′-o- phenylenebis(salicylideneimine)(LH2) and N,N′-o-phenylenebis(5- bromosalicylideneimine)(L′H2) obtained by condensation of salicylaldehyde or 5-Br salicylaldehyde with o-phenylene-diamine. The complexes have been characterized by the combination of IR, UV-Vis spectroscopy, magnetic measurements and electrochemical studies. Three manganese(III) complexes 3 [Mn(L)(ClO4)(H2O)], 5 [Mn(L)(OAc)] and 13 [Mn(L)(NCS)] have been characterized by X-ray crystallography. The X-ray structures show that the manganese(III) is hexa-coordinated in 3, it is penta-coordinated in 13, while in 5 there is an infinite chain where the MnL moieties are connected by acetate ions acting as bridging bidentate ligand. The cyclic voltammograms of all the manganese(III) complexes exhibit two reversible/quasi-reversible/ irreversible responses assignable to Mn(III)/Mn(II) and Mn(IV)/Mn(III) couples. It was observed that the ligand L′H2 containing the 5-bromosal moiety always stabilizes the lower oxidation states compared to the corresponding unsubstituted LH2. Cyclic voltammograms of the manganese(II) complexes (1 and 2) exhibit a quasi-reversible Mn(III)/Mn(II) couple at E1/2 -0.08 V for 1 and 0.054 V for 2. © 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five manganese complexes in an N 4O 2 donor environment have been prepared. Four of the compounds involve aroyl hydrazone as ligands and manganese is in a +2 oxidation state. The fifth compound was prepared using N,Nprime-o-phenylenebis(salicylideneimine) and imidazole as ligands where manganese is present in +3 oxidation state. X-ray crystal structure of one Mn +2 compound and the Mn +3 compound was determined. The relative stabilities of the Mn +2 and Mn +3 oxidation states were analyzed using the structural data and MO calculations. Manganese(II) complexes of four aroyl hydrazone ligands were prepared and characterized by different physicochemical techniques. The complexes are of the type Mn(L) 2, where L stands for the deprotonated hydrazone ligand. One of the compounds, Mn(pybzhz) 2, was also characterized by single crystal structure determination. In all these complexes, the Mn(II) is in an N 4O 2 donor environment and the Mn(II) center cannot be oxidized either chemically or electrochemically. However, when another ligand Ophsal is used to give the compound [Mn(Ophsal)(imzH) 2]ClO 4, which was also characterized by X-ray crystal structure determination, manganese can easily avail the +3 oxidation state. The relative stabilities of the +2 and +3 oxidation states of manganese were analyzed and it was concluded that the extent of distortion from the perfect octahedral geometry is the main controlling factor in these cases. © 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thesis is divided into four chapters. They are: introduction, experimental, results and discussion about the free ligands and results and discussion about the complexes. The First Chapter, the introductory chapter, is a general introduction to the study of solid state reactions. The Second Chapter is devoted to the materials and experimental methods that have been used for carrying out tile experiments. TIle Third Chapter is concerned with the characterisations of free ligands (Picolinic acid, nicotinic acid, and isonicotinic acid) by using elemental analysis, IR spectra, X-ray diffraction, and mass spectra. Additionally, the thermal behaviour of free ligands in air has been studied by means of thermogravimetry (TG), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC) measurements. The behaviour of thermal decomposition of the three free ligands was not identical Finally, a computer program has been used for kinetic evaluation of non-isothermal differential scanning calorimetry data according to a composite and single heating rate methods in comparison with the methods due to Ozawa and Kissinger methods. The most probable reaction mechanism for the free ligands was the Avrami-Erofeev equation (A) that described the solid-state nucleation-growth mechanism. The activation parameters of the decomposition reaction for free ligands were calculated and the results of different methods of data analysis were compared and discussed. The Fourth Chapter, the final chapter, deals with the preparation of cobalt, nickel, and copper with mono-pyridine carboxylic acids in aqueous solution. The prepared complexes have been characterised by analyses, IR spectra, X-ray diffraction, magnetic moments, and electronic spectra. The stoichiometry of these compounds was ML2x(H20), (where M = metal ion, L = organic ligand and x = water molecule). The environments of cobalt, nickel, and copper nicotinates and the environments of cobalt and nickel picolinates were octahedral, whereas the environment of copper picolinate [Cu(PA)2] was tetragonal. However, the environments of cobalt, nickel, and copper isonicotinates were polymeric octahedral structures. The morphological changes that occurred throughout the decomposition were followed by SEM observation. TG, DTG, and DSC measurements have studied the thermal behaviour of the prepared complexes in air. During the degradation processes of the hydrated complexes, the crystallisation water molecules were lost in one or two steps. This was also followed by loss of organic ligands and the metal oxides remained. Comparison between the DTG temperatures of the first and second steps of the dehydration suggested that the water of crystallisation was more strongly bonded with anion in Ni(II) complexes than in the complexes of Co(II) and Cu(II). The intermediate products of decomposition were not identified. The most probable reaction mechanism for the prepared complexes was also Avrami-Erofeev equation (A) characteristic of solid-state nucleation-growth mechanism. The tempemture dependence of conductivity using direct current was determined for cobalt, nickel, Cl.nd copper isonicotinates. An activation energy (ΔΕ), the activation energy (ΔΕ ) were calculated.The ternperature and frequency dependence of conductivity, the frequency dependence of dielectric constant, and the dielectric loss for nickel isonicotinate were determined by using altemating current. The value of s paralneter and the value of'density of state [N(Ef)] were calculated. Keyword Thermal decomposition, kinetic, electrical conduclion, pyridine rnono~ carboxylic acid, cOlnplex, transition metal compJex.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study reports an advance in designing copper-based redox sensing MRI contrast agents. Although the data demonstrate that copper(II) complexes are not able to compete with lanthanoids species in terms of contrast, the redox-dependent switch between diamagnetic copper(I) and paramagnetic copper(II) yields a novel redox-sensitive contrast moiety with potential for reversibility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research described within this thesis is concerned with the investigation of transition metal ion complexation within hydrophilic copolymer membranes. The membranes are copolymers of 4-methyl-4'-vinyl-2,2'-bipyridine, the 2-hydroxyethyl ester of 4,4'- dicarboxy-2,2'-bipyridine & bis-(5-vinylsalicylidene)ethylenediamine with 2-hydroxyethyl methacrylate. The effect of the polymer matrix on the formation and properties of transition metal iron complexes has been studied, specifically Cr(III) & Fe(II) salts for the bipyridyl- based copolymer membranes and Co(II), Ni(II) & Cu(II) salts for the salenH2- based copolymer membranes. The concomitant effect of complex formation on the properties of the polymer matrix have also been studied, e.g. on mechanical strength. A detailed body of work into the kinetics and thermodynamics for the formation of Cu(II) complexes in the salenH2- based copolymer membranes has been performed. The rate of complex formation is found to be very slow while the value of K for the equilibrium of complex formation is found to be unexpectedly small and shows a slight anion dependence. These phenomena are explained in terms of the effects of the heterogeneous phase provided by the polymer matrix. The transport of Cr(III) ions across uncomplexed and Cr(III)-pre-complexed bipyridyl-based membranes has been studied. In both cases, no Cr(III) coordination occurs within the time-scale of an experiment. Pre-complexation of the membrane does not lead to a change in the rate of permeation of Cr(III) ions. The transport of Co(II), Ni(II) & Cu(II) ions across salenH2- based membranes shows that there is no detectable lag-time in transport of the ions, despite independent evidence that complex formation within the membranes does occur. Finally, the synthesis of a number of functionalised ligands is described. Although they were found to be non-polymerisable by the methods employed in this research, they remain interesting ligands which provide a startmg pomt for further functionalisation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of cis and trans tetradentate copper macrocyclic complexes, of ring size fourteen - sixteen, which employ amine and thioether donor groups are reported. Apart from 5,6,15,16-bisbenzo-8,13-diaza-1,4-dithia-cyclohexadecane copper(I) (cis-[Cu(H4NbuSen)]+) all of the complexes are obtained in the copper(II) form. Crystallographic analysis shows that the copper(II) complexes all adopt a distorted planar geometry around the copper. In contrast, cis-[Cu(H4NbuSen)]+ is found to adopt a distorted tetrahedral geometry. The complexes were subjected to electrochemical analysis in water and acetonitrile. The effect of the solvent, positions of the donor atoms (cis/trans) on E1/2 is discussed as is the comparison of the electrochemical behaviour of these complexes with their parent Schiff base macrocycles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is concerned with the investigation of transition metal (TM) ion complexation with hydrophilic membranes composed of copolymers of 4-vinyl pyridine & 4-methyl-4'vinyl- 2,2'-bipyridine with 2-hydroxyethyl methacrylate. The Cu(II), CoCII) & Fe(II) complexes with these coordinating membranes were characterised by a variety of techniques, in order to assess the effect of the polymer on the properties of the complex, and vice versa. A detailed programme of work was instigated into the kinetics of formation for the polymer-bound tris(bipyridyl) iron(II) complex; the rate and extent of complex formation was found to be anion-dependent. This is explained in terms of the influence of the anion on the transport properties and water content of the membrane, the controlling factor in the development of the tris-complex being the equilibrium concentration of Fe(II) in the gel matrix. A series of transport studies were performed with a view to the potential application of complexing hydrogel membranes for aqueous TM ion separations. A number of salts were studied individually and shown to possess a range of permeabilities; the degree of interaction between particular metal-ion:ligand combinations is given by the lag-time observed before steady-state permeation is achieved. However, when two TM salts that individually display different transport properties were studied in combination, they showed similar lag-times & permeabilities, characteristic of the more strongly coordinating metal ion. This 'anti-selective' nature thus renders the membrane systems unsuitable for TM ion separations. Finally, attempts were made to synthesise and immobilise a series of N ,0-donor macrocyclic ligands into hydrogel membranes. Although the functionalisation reactions failed, limited transport data was obtained from membranes in which the ligands were physically entrapped within the polymer matrix.