29 resultados para Ontologies
em Aston University Research Archive
Resumo:
Ontology search and reuse is becoming increasingly important as the quest for methods to reduce the cost of constructing such knowledge structures continues. A number of ontology libraries and search engines are coming to existence to facilitate locating and retrieving potentially relevant ontologies. The number of ontologies available for reuse is steadily growing, and so is the need for methods to evaluate and rank existing ontologies in terms of their relevance to the needs of the knowledge engineer. This paper presents AKTiveRank, a prototype system for ranking ontologies based on a number of structural metrics.
Resumo:
Representing knowledge using domain ontologies has shown to be a useful mechanism and format for managing and exchanging information. Due to the difficulty and cost of building ontologies, a number of ontology libraries and search engines are coming to existence to facilitate reusing such knowledge structures. The need for ontology ranking techniques is becoming crucial as the number of ontologies available for reuse is continuing to grow. In this paper we present AKTiveRank, a prototype system for ranking ontologies based on the analysis of their structures. We describe the metrics used in the ranking system and present an experiment on ranking ontologies returned by a popular search engine for an example query.
Resumo:
Ontologies have become widely accepted as the main method for representing knowledge in Knowledge Management (KM) applica-tions. Given the continuous and rapid change and dynamic nature of knowledge in all fields, automated methods for construct-ing ontologies are of great importance. All ontologies or taxonomies currently in use have been hand built and require consider-able manpower to keep up to date. Taxono-mies are less logically rigorous than ontolo-gies, and in this paper we consider the re-quirements for a system which automatically constructed taxonomies. There are a number of potentially useful methods for construct-ing hierarchically organised concepts from a collection of texts and there are a number of automatic methods which permit one to as-sociate one word with another. The impor-tant issue for the successful development of this research area is to identify techniques for labelling the relation between two candi-date terms, if one exists. We consider a number of possible approaches and argue that the majority are unsuitable for our re-quirements.
Resumo:
Ontologies have become the knowledge representation medium of choice in recent years for a range of computer science specialities including the Semantic Web, Agents, and Bio-informatics. There has been a great deal of research and development in this area combined with hype and reaction. This special issue is concerned with the limitations of ontologies and how these can be addressed, together with a consideration of how we can circumvent or go beyond these constraints. The introduction places the discussion in context and presents the papers included in this issue.
Resumo:
Recently, we have seen an explosion of interest in ontologies as artifacts to represent human knowledge and as critical components in knowledge management, the semantic Web, business-to-business applications, and several other application areas. Various research communities commonly assume that ontologies are the appropriate modeling structure for representing knowledge. However, little discussion has occurred regarding the actual range of knowledge an ontology can successfully represent.
Resumo:
The use of ontologies as representations of knowledge is widespread but their construction, until recently, has been entirely manual. We argue in this paper for the use of text corpora and automated natural language processing methods for the construction of ontologies. We delineate the challenges and present criteria for the selection of appropriate methods. We distinguish three ma jor steps in ontology building: associating terms, constructing hierarchies and labelling relations. A number of methods are presented for these purposes but we conclude that the issue of data-sparsity still is a ma jor challenge. We argue for the use of resources external tot he domain specific corpus.
Resumo:
The growing use of a variety of information systems in crisis management both by non-governmental organizations (NGOs) and emergency management agencies makes the challenges of information sharing and interoperability increasingly important. The use of semantic web technologies is a growing area and is a technology stack specifically suited to these challenges. This paper presents a review of ontologies, vocabularies and taxonomies that are useful in crisis management systems. We identify the different subject areas relevant to crisis management based on a review of the literature. The different ontologies and vocabularies available are analysed in terms of their coverage, design and usability. We also consider the use cases for which they were designed and the degree to which they follow a variety of standards. While providing comprehensive ontologies for the crisis domain is not feasible or desirable there is considerable scope to develop ontologies for the subject areas not currently covered and for the purposes of interoperability.
Resumo:
In view of the need to provide tools to facilitate the re-use of existing knowledge structures such as ontologies, we present in this paper a system, AKTiveRank, for the ranking of ontologies. AKTiveRank uses as input the search terms provided by a knowledge engineer and, using the output of an ontology search engine, ranks the ontologies. We apply a number of metrics in an attempt to investigate their appropriateness for ranking ontologies, and compare the results with a questionnaire-based human study. Our results show that AKTiveRank will have great utility although there is potential for improvement.
Resumo:
Knowledge maintenance is a major challenge for both knowledge management and the Semantic Web. Operating over the Semantic Web, there will be a network of collaborating agents, each with their own ontologies or knowledge bases. Change in the knowledge state of one agent may need to be propagated across a number of agents and their associated ontologies. The challenge is to decide how to propagate a change of knowledge state. The effects of a change in knowledge state cannot be known in advance, and so an agent cannot know who should be informed unless it adopts a simple ‘tell everyone – everything’ strategy. This situation is highly reminiscent of the classic Frame Problem in AI. We argue that for agent-based technologies to succeed, far greater attention must be given to creating an appropriate model for knowledge update. In a closed system, simple strategies are possible (e.g. ‘sleeping dog’ or ‘cheap test’ or even complete checking). However, in an open system where cause and effect are unpredictable, a coherent cost-benefit based model of agent interaction is essential. Otherwise, the effectiveness of every act of knowledge update/maintenance is brought into question.
Resumo:
The evaluation of ontologies is vital for the growth of the Semantic Web. We consider a number of problems in evaluating a knowledge artifact like an ontology. We propose in this paper that one approach to ontology evaluation should be corpus or data driven. A corpus is the most accessible form of knowledge and its use allows a measure to be derived of the ‘fit’ between an ontology and a domain of knowledge. We consider a number of methods for measuring this ‘fit’ and propose a measure to evaluate structural fit, and a probabilistic approach to identifying the best ontology.
Resumo:
Ontologies have become a key component in the Semantic Web and Knowledge management. One accepted goal is to construct ontologies from a domain specific set of texts. An ontology reflects the background knowledge used in writing and reading a text. However, a text is an act of knowledge maintenance, in that it re-enforces the background assumptions, alters links and associations in the ontology, and adds new concepts. This means that background knowledge is rarely expressed in a machine interpretable manner. When it is, it is usually in the conceptual boundaries of the domain, e.g. in textbooks or when ideas are borrowed into other domains. We argue that a partial solution to this lies in searching external resources such as specialized glossaries and the internet. We show that a random selection of concept pairs from the Gene Ontology do not occur in a relevant corpus of texts from the journal Nature. In contrast, a significant proportion can be found on the internet. Thus, we conclude that sources external to the domain corpus are necessary for the automatic construction of ontologies.
Resumo:
In the context of the needs of the Semantic Web and Knowledge Management, we consider what the requirements are of ontologies. The ontology as an artifact of knowledge representation is in danger of becoming a Chimera. We present a series of facts concerning the foundations on which automated ontology construction must build. We discuss a number of different functions that an ontology seeks to fulfill, and also a wish list of ideal functions. Our objective is to stimulate discussion as to the real requirements of ontology engineering and take the view that only a selective and restricted set of requirements will enable the beast to fly.
Resumo:
The fundamental failure of current approaches to ontology learning is to view it as single pipeline with one or more specific inputs and a single static output. In this paper, we present a novel approach to ontology learning which takes an iterative view of knowledge acquisition for ontologies. Our approach is founded on three open-ended resources: a set of texts, a set of learning patterns and a set of ontological triples, and the system seeks to maintain these in equilibrium. As events occur which disturb this equilibrium, actions are triggered to re-establish a balance between the resources. We present a gold standard based evaluation of the final output of the system, the intermediate output showing the iterative process and a comparison of performance using different seed input. The results are comparable to existing performance in the literature.
Resumo:
In this paper we present a new approach to ontology learning. Its basis lies in a dynamic and iterative view of knowledge acquisition for ontologies. The Abraxas approach is founded on three resources, a set of texts, a set of learning patterns and a set of ontological triples, each of which must remain in equilibrium. As events occur which disturb this equilibrium various actions are triggered to re-establish a balance between the resources. Such events include acquisition of a further text from external resources such as the Web or the addition of ontological triples to the ontology. We develop the concept of a knowledge gap between the coverage of an ontology and the corpus of texts as a measure triggering actions. We present an overview of the algorithm and its functionalities.
Resumo:
Despite years of effort in building organisational taxonomies, the potential of ontologies to support knowledge management in complex technical domains is under-exploited. The authors of this chapter present an approach to using rich domain ontologies to support sense-making tasks associated with resolving mechanical issues. Using Semantic Web technologies, the authors have built a framework and a suite of tools which support the whole semantic knowledge lifecycle. These are presented by describing the process of issue resolution for a simulated investigation concerning failure of bicycle brakes. Foci of the work have included ensuring that semantic tasks fit in with users’ everyday tasks, to achieve user acceptability and support the flexibility required by communities of practice with differing local sub-domains, tasks, and terminology.