6 resultados para Multiagent systems
em Aston University Research Archive
Resumo:
We present a novel market-based method, inspired by retail markets, for resource allocation in fully decentralised systems where agents are self-interested. Our market mechanism requires no coordinating node or complex negotiation. The stability of outcome allocations, those at equilibrium, is analysed and compared for three buyer behaviour models. In order to capture the interaction between self-interested agents, we propose the use of competitive coevolution. Our approach is both highly scalable and may be tuned to achieve specified outcome resource allocations. We demonstrate the behaviour of our approach in simulation, where evolutionary market agents act on behalf of service providing nodes to adaptively price their resources over time, in response to market conditions. We show that this leads the system to the predicted outcome resource allocation. Furthermore, the system remains stable in the presence of small changes in price, when buyers' decision functions degrade gracefully. © 2009 The Author(s).
Resumo:
We develop a multi-agent based model to simulate a population which comprises of two ethnic groups and a peacekeeping force. We investigate the effects of different strategies for civilian movement to the resulting violence in this bi-communal population. Specifically, we compare and contrast random and race-based migration strategies. Race-based migration leads the formation of clusters. Previous work in this area has shown that same-race clustering instigates violent behavior in otherwise passive segments of the population. Our findings confirm this. Furthermore, we show that in settings where only one of the two races adopts race-based migration it is a winning strategy especially in violently predisposed populations. On the other hand, in relatively peaceful settings clustering is a restricting factor which causes the race that adopts it to drift into annihilation. Finally, we show that when race-based migration is adopted as a strategy by both ethnic groups it results in peaceful co-existence even in the most violently predisposed populations.
Resumo:
This paper concerns the problem of agent trust in an electronic market place. We maintain that agent trust involves making decisions under uncertainty and therefore the phenomenon should be modelled probabilistically. We therefore propose a probabilistic framework that models agent interactions as a Hidden Markov Model (HMM). The observations of the HMM are the interaction outcomes and the hidden state is the underlying probability of a good outcome. The task of deciding whether to interact with another agent reduces to probabilistic inference of the current state of that agent given all previous interaction outcomes. The model is extended to include a probabilistic reputation system which involves agents gathering opinions about other agents and fusing them with their own beliefs. Our system is fully probabilistic and hence delivers the following improvements with respect to previous work: (a) the model assumptions are faithfully translated into algorithms; our system is optimal under those assumptions, (b) It can account for agents whose behaviour is not static with time (c) it can estimate the rate with which an agent's behaviour changes. The system is shown to significantly outperform previous state-of-the-art methods in several numerical experiments. Copyright © 2010, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.
Resumo:
Lock-in is observed in real world markets of experience goods; experience goods are goods whose characteristics are difficult to determine in advance, but ascertained upon consumption. We create an agent-based simulation of consumers choosing between two experience goods available in a virtual market. We model consumers in a grid representing the spatial network of the consumers. Utilising simple assumptions, including identical distributions of product experience and consumers having a degree of follower tendency, we explore the dynamics of the model through simulations. We conduct simulations to create a lock-in before testing several hypotheses upon how to break an existing lock-in; these include the effect of advertising and free give-away. Our experiments show that the key to successfully breaking a lock-in required the creation of regions in a consumer population. Regions arise due to the degree of local conformity between agents within the regions, which spread throughout the population when a mildly superior competitor was available. These regions may be likened to a niche in a market, which gains in popularity to transition into the mainstream.
Resumo:
Typical Double Auction (DA) models assume that trading agents are one-way traders. With this limitation, they cannot directly reflect the fact individual traders in financial markets (the most popular application of double auction) choose their trading directions dynamically. To address this issue, we introduce the Bi-directional Double Auction (BDA) market which is populated by two-way traders. Based on experiments under both static and dynamic settings, we find that the allocative efficiency of a static continuous BDA market comes from rational selection of trading directions and is negatively related to the intelligence of trading strategies. Moreover, we introduce Kernel trading strategy designed based on probability density estimation for general DA market. Our experiments show it outperforms some intelligent DA market trading strategies. Copyright © 2013, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.