24 resultados para Learning set
em Aston University Research Archive
Resumo:
Context traditionally has been regarded in vision research as a determinant for the interpretation of sensory information on the basis of previously acquired knowledge. Here we propose a novel, complementary perspective by showing that context also specifically affects visual category learning. In two experiments involving sets of Compound Gabor patterns we explored how context, as given by the stimulus set to be learned, affects the internal representation of pattern categories. In Experiment 1, we changed the (local) context of the individual signal classes by changing the configuration of the learning set. In Experiment 2, we varied the (global) context of a fixed class configuration by changing the degree of signal accentuation. Generalization performance was assessed in terms of the ability to recognize contrast-inverted versions of the learning patterns. Both contextual variations yielded distinct effects on learning and generalization thus indicating a change in internal category representation. Computer simulations suggest that the latter is related to changes in the set of attributes underlying the production rules of the categories. The implications of these findings for phenomena of contrast (in)variance in visual perception are discussed.
Resumo:
The fundamental failure of current approaches to ontology learning is to view it as single pipeline with one or more specific inputs and a single static output. In this paper, we present a novel approach to ontology learning which takes an iterative view of knowledge acquisition for ontologies. Our approach is founded on three open-ended resources: a set of texts, a set of learning patterns and a set of ontological triples, and the system seeks to maintain these in equilibrium. As events occur which disturb this equilibrium, actions are triggered to re-establish a balance between the resources. We present a gold standard based evaluation of the final output of the system, the intermediate output showing the iterative process and a comparison of performance using different seed input. The results are comparable to existing performance in the literature.
Resumo:
In this paper we present a new approach to ontology learning. Its basis lies in a dynamic and iterative view of knowledge acquisition for ontologies. The Abraxas approach is founded on three resources, a set of texts, a set of learning patterns and a set of ontological triples, each of which must remain in equilibrium. As events occur which disturb this equilibrium various actions are triggered to re-establish a balance between the resources. Such events include acquisition of a further text from external resources such as the Web or the addition of ontological triples to the ontology. We develop the concept of a knowledge gap between the coverage of an ontology and the corpus of texts as a measure triggering actions. We present an overview of the algorithm and its functionalities.
Resumo:
This paper discusses critical findings from a two-year EU-funded research project involving four European countries: Austria, England, Slovenia and Romania. The project had two primary aims. The first of these was to develop a systematic procedure for assessing the balance between learning outcomes acquired in education and the specific needs of the labour market. The second aim was to develop and test a set of meta-level quality indicators aimed at evaluating the linkages between education and employment. The project was distinctive in that it combined different partners from Higher Education, Vocational Training, Industry and Quality Assurance. One of the key emergent themes identified in exploratory interviews was that employers and recent business graduates in all four countries want a well-rounded education which delivers a broad foundation of key business knowledge across the various disciplines. Both groups also identified the need for personal development in critical skills and competencies. Following the exploratory study, a questionnaire was designed to address five functional business areas, as well as a cluster of 8 business competencies. Within the survey, questions relating to the meta-level quality indicators assessed the impact of these learning outcomes on the workplace, in terms of the following: 1) value, 2) relevance and 3) graduate ability. This paper provides an overview of the study findings from a sample of 900 business graduates and employers. Two theoretical models are proposed as tools for predicting satisfaction with work performance and satisfaction with business education. The implications of the study findings for education, employment and European public policy are discussed.
Resumo:
The dynamics of on-line learning is investigated for structurally unrealizable tasks in the context of two-layer neural networks with an arbitrary number of hidden neurons. Within a statistical mechanics framework, a closed set of differential equations describing the learning dynamics can be derived, for the general case of unrealizable isotropic tasks. In the asymptotic regime one can solve the dynamics analytically in the limit of large number of hidden neurons, providing an analytical expression for the residual generalization error, the optimal and critical asymptotic training parameters, and the corresponding prefactor of the generalization error decay.
Resumo:
The dynamics of supervised learning in layered neural networks were studied in the regime where the size of the training set is proportional to the number of inputs. The evolution of macroscopic observables, including the two relevant performance measures can be predicted by using the dynamical replica theory. Three approximation schemes aimed at eliminating the need to solve a functional saddle-point equation at each time step have been derived.
Resumo:
We study the dynamics of on-line learning in multilayer neural networks where training examples are sampled with repetition and where the number of examples scales with the number of network weights. The analysis is carried out using the dynamical replica method aimed at obtaining a closed set of coupled equations for a set of macroscopic variables from which both training and generalization errors can be calculated. We focus on scenarios whereby training examples are corrupted by additive Gaussian output noise and regularizers are introduced to improve the network performance. The dependence of the dynamics on the noise level, with and without regularizers, is examined, as well as that of the asymptotic values obtained for both training and generalization errors. We also demonstrate the ability of the method to approximate the learning dynamics in structurally unrealizable scenarios. The theoretical results show good agreement with those obtained by computer simulations.
Resumo:
In this paper we review recent theoretical approaches for analysing the dynamics of on-line learning in multilayer neural networks using methods adopted from statistical physics. The analysis is based on monitoring a set of macroscopic variables from which the generalisation error can be calculated. A closed set of dynamical equations for the macroscopic variables is derived analytically and solved numerically. The theoretical framework is then employed for defining optimal learning parameters and for analysing the incorporation of second order information into the learning process using natural gradient descent and matrix-momentum based methods. We will also briefly explain an extension of the original framework for analysing the case where training examples are sampled with repetition.
Resumo:
Universities which set up online repositories for the management of learning and teaching resources commonly find that uptake is poor. Tutors are often reluctant to upload their materials to e-repositories, even though the same tutors are happy to upload resources to the virtual learning environment (e.g. Blackboard, Moodle, Sakai) and happy to upload their research papers to the university’s research publications repository. The paper reviews this phenomenon and suggests constructive ways in which tutors can be encouraged to engage with an e-repository. The authors have recently completed a major project “Developing Repositories at Worcester” which is part of a group of similar projects in the UK. The paper includes the feedback and the lessons learned from these projects, based on the publications and reports they have produced. They cover ways of embedding repository use into institutional working practice, and give examples of different types of repository designed to meet the needs of those using different kinds of learning and teaching resources. As well as this specific experience, the authors summarise some of the main findings from UK publications, in particular the December 2008 report of Joint Information Systems Committee: Good intentions: improving the evidence base in support of sharing learning materials and Online Innovation in Higher Education, Ron Cooke’s report to a UK government initiative on the future of Higher Education. The issues covered include the development of Web 2.0 style repositories rather than conventionally structured ones, the use of tags rather than metadata, the open resources initiative, the best use for conventional repositories, links to virtual learning environments, and the processes for the management and support of repositories within universities. In summary the paper presents an optimistic, constructive view of how to embed the use of e-repositories into the working practices of university tutors. Equally, the authors are aware of the considerable difficulties in making progress and are realistic about what can be achieved. The paper uses evidence and experience drawn from those working in this field to suggest a strategic vision in which the management of e-learning resources is productive, efficient and meets the needs of both tutors and their students.
Resumo:
Purpose - This article examines the internationalisation of Tesco and extracts the salient lessons learned from this process. Design/methodology/ approach - This research draws on a dataset of 62 in-depth interviews with key executives, sell- and buy-side analysts and corporate advisers at the leading investment banks in the City of London to detail the experiences of Tesco's European expansion. Findings - The case study of Tesco illuminates a number of different dimensions of the company's international experience. It offers some new insights into learning in international distribution environments such as the idea that learning is facilitated by uncertainty or "shocks" in the international retail marketplace; the size of the domestic market may inhibit change and so disable international learning; and learning is not necessarily facilitated by step-by-step incremental approaches to expansion. Research limitations/implications - The paper explores learning from a rather broad perspective, although it is hoped that these parameters can be used to raise a new set of more detailed priorities for future research on international retail learning. It is also recognised that the data gathered for this case study focus on Tesco's European operations. Practical implications - This paper raises a number of interesting issues such as whether the extremities of the business may be a more appropriate place for management to experiment and test new retail innovations, and the extent to which retailers take self-reflection seriously. Originality/value - The paper applies a new theoretical learning perspective to capture the variety of experiences during the internationalisation process, thus addressing a major gap in our understanding of the whole internationalisation process. © Emerald Group Publishing Limited.
Resumo:
Hemispheric differences in the learning and generalization of pattern categories were explored in two experiments involving sixteen patients with unilateral posterior, cerebral lesions in the left (LH) or right (RH) hemisphere. In each experiment participants were first trained to criterion in a supervised learning paradigm to categorize a set of patterns that either consisted of simple geometric forms (Experiment 1) or unfamiliar grey-level images (Experiment 2). They were then tested for their ability to generalize acquired categorical knowledge to contrast-reversed versions of the learning patterns. The results showed that RH lesions impeded category learning of unfamiliar grey-level images more severely than LH lesions, whereas this relationship appeared reversed for categories defined by simple geometric forms. With regard to generalization to contrast reversal, categorization performance of LH and RH patients was unaffected in the case of simple geometric forms. However, generalization to of contrast-reversed grey-level images distinctly deteriorated for patients with LH lesions relative to those with RH lesions, with the latter (but not the former) being consistently unable to identify the pattern manipulation. These findings suggest a differential use of contrast information in the representation of pattern categories in the two hemispheres. Such specialization appears in line with previous distinctions between a predominantly lefthemispheric, abstract-analytical and a righthemispheric, specific-holistic representation of object categories, and their prediction of a mandatory representation of contrast polarity in the RH. Some implications for the well-established dissociation of visual disorders for the recognition of faces and letters are discussed.
Resumo:
The discrimination of patterns that are mirror-symmetric counterparts of each other is difficult and requires substantial training. We explored whether mirror-image discrimination during expertise acquisition is based on associative learning strategies or involves a representational shift towards configural pattern descriptions that permit resolution of symmetry relations. Subjects were trained to discriminate between sets of unfamiliar grey-level patterns in two conditions, which either required the separation of mirror images or not. Both groups were subsequently tested in a 4-class category-learning task employing the same set of stimuli. The results show that subjects who had successfully learned to discriminate between mirror-symmetric counterparts were distinctly faster in the categorization task, indicating a transfer of conceptual knowledge between the two tasks. Additional computer simulations suggest that the development of such symmetry concepts involves the construction of configural, protoholistic descriptions, in which positions of pattern parts are encoded relative to a spatial frame of reference.
Resumo:
An alarmingly high number of adults in the world's most developed countries are linguistically functionally illiterate. The research presented in this paper describes ALEX©, an ongoing attempt to successfully develop an innovative assistive, mobile, experiential language-learning application to support the daily literacy education and needs of such adults, anywhere, anytime. We introduce a set of guidelines we have collated to inform the design of mobile assistive technologies, introduce our application and describe the design activities to date that have led to the development of our current application. We present this overview in the hope that it is useful to others working in the fledgling domains of mobile assistive technology design and/or mobile experiential language-learning technologies.
Resumo:
We developed a parallel strategy for learning optimally specific realizable rules by perceptrons, in an online learning scenario. Our result is a generalization of the Caticha–Kinouchi (CK) algorithm developed for learning a perceptron with a synaptic vector drawn from a uniform distribution over the N-dimensional sphere, so called the typical case. Our method outperforms the CK algorithm in almost all possible situations, failing only in a denumerable set of cases. The algorithm is optimal in the sense that it saturates Bayesian bounds when it succeeds.
Resumo:
There appears to be a missing dimension in OL literature to embrace the collective experience of emotion, both within groups and communities and also across the organization as a whole. The concept of OL efficacy- as a stimulus offering energy and direction for learning - remains unexplored. This research involved engaging with a company we have called ‘Electroco’ in depth to create a rich and nuanced representation of OL and members’ perceptions of OL over an extended time-frame (five years). We drew upon grounded theory research methodology (Locke, 2001), to elicit feedback from the organization, which was then used to inform future research plans and/ or refine emerging ideas. The concept of OL efficacy gradually emerged as a factor to be considered when exploring the relationship between individual learning and OL. . Bearing in mind Bandura’s (1982) conceptualization of self-efficacy (linked with mastery, modelling, verbal persuasion and emotional arousal), we developed a coding strategy encompassing these four factors as conceptualized at the organizational level. We added a fifth factor: ‘control of OL.’ We focused on feelings across the organization and the extent of consensus or otherwise around these five attributes. The construct has potential significance for how people are managed in many ways. Not only is OL efficacy is difficult for competitors to copy (arising as it does from the collective experience of working within a specific context); the self-efficacy concept suggests that success can be engineered with ‘small wins’ to reinforce mastery perceptions. Leaders can signal the importance of interaction with the external context, and encourage reflection on the strategies adopted by competitors or benchmark organizations (modelling). The theory also underlines the key role managers may play in persuading others about their organization’s propensity to learn (by focusing on success stories, for example). Research is set to continue within other sectors, including the high-performance financial service sector as well as the health-care technology sector.