87 resultados para Laser-diode-array pumping
em Aston University Research Archive
Resumo:
We report on a theoretical study of an interferometric system in which half of a collimated beam from a broadband optical source is intercepted by a glass slide, the whole beam subsequently being incident on a diffraction grating and the resulting spectrum being viewed using a linear CCD array. Using Fourier theory, we derive the expression of the intensity distribution across the CCD array. This expression is then examined for non-cavity and cavity sources for different cases determined by the direction from which the slide is inserted into the beam and the source bandwidth. The theoretical model shows that the narrower the source linewidth, the higher the deviation of the Talbot bands' visibility (as it is dependent on the path imbalance) from the previously known triangular shape. When the source is a laser diode below threshold, the structure of the CCD signal spectrum is very complex. The number of components present simultaneously increases with the number of grating lines and decreases with the laser cavity length. The model also predicts the appearance of bands in situations not usually associated with Talbot bands.
Resumo:
We report on a theoretical study of an interferometric system in which half of a collimated beam from a broadband optical source is intercepted by a glass slide, the whole beam subsequently being incident on a diffraction grating and the resulting spectrum being viewed using a linear CCD array. Using Fourier theory, we derive the expression of the intensity distribution across the CCD array. This expression is then examined for non-cavity and cavity sources for different cases determined by the direction from which the slide is inserted into the beam and the source bandwidth. The theoretical model shows that the narrower the source linewidth, the higher the deviation of the Talbot bands' visibility (as it is dependent on the path imbalance) from the previously known triangular shape. When the source is a laser diode below threshold, the structure of the CCD signal spectrum is very complex. The number of components present simultaneously increases with the number of grating lines and decreases with the laser cavity length. The model also predicts the appearance of bands in situations not usually associated with Talbot bands.
Resumo:
Efficient suppression of relaxation oscillations in the output signal from an overdriven gain-switched laser diode was demonstrated. Several quantum-well distributed feedback laser diodes from different manufacturers were used for experimental analysis. A five-fold increase in the peak power was achieved for the tail-free operation. It was found that spectral filtering removed the nonlinearly chirped components resulting in pulse shortening by a factor of three.
Resumo:
We report on the problems encountered when replacing a tungsten filament lamp with a laser diode in a set-up for displaying Talbot bands using a diffraction grating. It is shown that the band pattern is rather complex and strong interference signals may exist in situations where Talbot bands are not normally expected to appear. In these situations, the period of the bands increases with the optical path difference (OPD). The visibility of bands as dependence on path imbalance is obtained by suitably obstructing halfway into the arms of a Michelson interferometer using opaque screens.
Resumo:
Interferometric sensors for slowly varying measurands, such as temperature or pressure, require a long term frequency stability of the source. We describe a system for frequency locking a laser diode to an atomic transition in a hollow cathode lamp using the optogalvanic effect.
Resumo:
Self-seeded, gain-switched operation of an InGaN multi-quantum-well laser diode has been demonstrated for the first time. An external cavity comprising Littrow geometry was implemented for spectral control of pulsed operation. The feedback was optimized by adjusting the external cavity length and the driving frequency of the laser. The generated pulses had a peak power in excess of 400mW, a pulse duration of 60ps, a spectral linewidth of 0.14nm and maximum side band suppression ratio of 20dB. It was tunable within the range of 3.6nm centered at a wavelength of 403nm.
Resumo:
We report on the problems encountered when replacing a tungsten filament lamp with a laser diode in a set-up for displaying Talbot bands using a diffraction grating. It is shown that the band pattern is rather complex and strong interference signals may exist in situations where Talbot bands are not normally expected to appear. In these situations, the period of the bands increases with the optical path difference (OPD). The visibility of bands as dependence on path imbalance is obtained by suitably obstructing halfway into the arms of a Michelson interferometer using opaque screens.
Resumo:
We demonstrate experimentally a novel and simple tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a distribution feedback laser diode and high reflection fiber Bragg gratings (FBGs). In this filter, variable time delay is provided by cascaded high reflection fiber Bragg gratings (FBGs), and the tuning of the filter is realized by tuning different FBG to match the fixed carrier wavelength, or adjusting the carrier wavelength to fit different FBG. The incoherent negative tapping is realized by using the carrier depletion effect in a distribution feedback laser diode.
Resumo:
The THz optoelectronics field is now maturing and semiconductor-based THz antenna devices are becoming more widely implemented as analytical tools in spectroscopy and imaging. Photoconductive (PC) THz switches/antennas are driven optically typically using either an ultrashort-pulse laser or an optical signal composed of two simultaneous longitudinal wavelengths which are beat together in the PC material at a THz difference frequency. This allows the generation of (photo)carrier pairs which are then captured over ultrashort timescales usually by defects and trapping sites throughout the active material lattice. Defect-implanted PC materials with relatively high bandgap energy are typically used and many parameters such as carrier mobility and PC gain are greatly compromised. This paper demonstrates the implementation of low bandgap energy InAs quantum dots (QDs) embedded in standard crystalline GaAs as both the PC medium and the ultrafast capture mechanism in a PC THz antenna. This semiconductor structure is grown using standard MBE methods and allows the device to be optically driven efficiently at wavelengths up to ~1.3 µm, in this case by a single tunable dual-mode QD diode laser.
Resumo:
A compact all-room-temperature frequency-doubling scheme generating cw orange light with a periodically poled potassium titanyl phosphate waveguide and a quantum-dot external cavity diode laser is demonstrated. A frequency-doubled power of up to 4.3 mW at the wavelength of 612.9 nm with a conversion efficiency exceeding 10% is reported. Second harmonic wavelength tuning between 612.9 nm and 616.3 nm by changing the temperature of the crystal is also demonstrated. © Springer-Verlag 2010.
Resumo:
A compact high-power yellow-green continuous wave (CW) laser source based on second-harmonic generation (SHG) in a 5% MgO doped periodically poled congruent lithium niobate (PPLN) waveguide crystal pumped by a quantum-dot fiber Bragg grating (QD-FBG) laser diode is demonstrated. A frequency-doubled power of 90.11 mW at the wavelength of 560.68 nm with a conversion efficiency of 52.4% is reported. To the best of our knowledge, this represents the highest output power and conversion efficiency achieved to date in this spectral region from a diode-pumped PPLN waveguide crystal, which could prove extremely valuable for the deployment of such a source in a wide range of biomedical applications.
Resumo:
In this letter, the polarization properties of a random fiber laser operating via Raman gain and random distributed feedback owing to Rayleigh scattering are investigated for the first time. Using polarized pump, the partially polarized generation is obtained with a generation spectrum exhibiting discrete narrow spectral features contrary to the smooth spectrum observed for the depolarized pump. The threshold, output power, degree of polarization and the state of polarization (SOP) of the lasing can be significantly influenced by the SOP of the pump. Fine narrow spectral components are also sensitive to the SOP of the pump wave. Furthermore, we found that random lasing's longitudinal power distributions are different in the case of polarized and depolarized pumping that results in considerable reduction of the generation slope efficiency for the polarized radiation. Our results indicate that polarization effects play an important role on the performance of the random fiber laser. This work improves the understanding of the physics of random lasing in fibers and makes a step forward towards the establishment of the vector model of random fiber lasers.
Resumo:
The longitudinal distribution of the Stokes-component power in a Raman fibre laser with a random distributed feedback and unidirectional pumping is measured. The fibre parameters (linear loss and Rayleigh backscattering coefficient) are calculated based on the distributions obtained. A numerical model is developed to describe the lasing power distribution. The simulation results are in good agreement with the experimental data. © 2012 Kvantovaya Elektronika and Turpion Ltd.
Resumo:
Many applications of high-power laser diodes demand tight focusing. This is often not possible due to the multimode nature of semiconductor laser radiation possessing beam propagation parameter M2 values in double-digits. We propose a method of 'interference' superfocusing of high-M2 diode laser beams with a technique developed for the generation of Bessel beams based on the employment of an axicon fabricated on the tip of a 100 μm diameter optical fiber with highprecision direct laser writing. Using axicons with apex angle 140º and rounded tip area as small as 10 μm diameter, we demonstrate 2-4 μm diameter focused laser 'needle' beams with approximately 20 μm propagation length generated from multimode diode laser with beam propagation parameter M2=18 and emission wavelength of 960 nm. This is a few-fold reduction compared to the minimal focal spot size of 11 μm that could be achieved if focused by an 'ideal' lens of unity numerical aperture. The same technique using a 160º axicon allowed us to demonstrate few-μm-wide laser 'needle' beams with nearly 100 μm propagation length with which to demonstrate optical trapping of 5-6 μm rat blood red cells in a water-heparin solution. Our results indicate the good potential of superfocused diode laser beams for applications relating to optical trapping and manipulation of microscopic objects including living biological objects with aspirations towards subsequent novel lab-on-chip configurations.
Resumo:
The channelled spectrum of an optical beam generated by a laser diode operated below threshold after traversing microscope glass plates is spectrally analysed using a grating and a CCD linear array. The experiment has the following goals: to display the resulting channelled spectrum, to familiarize students with an important topic in metrology and to illustrate some interesting topics from spectroscopy using a CCD array as a spectrometer.