15 resultados para Integrin-binding Ligand

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

By employing G75 gel-filtration chromotography, it has been demonstrated that human plasma gallium speciation (and by implication, Al speciation) is bimodal. Normally, gallium was predominantly bound to a high molecular weight fraction which was presumably transferrin. Literature reviews and experimental work throughout this thesis provided evidence to support this idea. An aluminium-transferrin species was assumed to be relatively non-toxic and a protective function for this complex has been suggested. A second, low molecular weight species of gallium was observed and its identity has been suggested to be citrate. The results of this thesis support the concept citrate was a gallium binding ligand present in the plasma, but there was another species (tentatively identified as phosphate) which bound gallium to a much greater degree than did citrate in the majority of samples studied. The consequence of a low molecular weight species of aluminium is the possibility that this leads to a more rapid, uncontrolled deposition of the metal in the brain compared to a transferrin mediated mechanism. Plasma speciation studies in Alzheimer's disease, Parkinson's disease, Down's syndrome, and neonates has revealed an altered ratio of the two gallium species found in control subjects. In all groups there was an increase in the potentially more neurotoxic low molecular weight species. These observations have led to a suggested mechanism of accumulation of metals in the brain, which is known to occur in the first three groups. Possible pathogenic mechanisms are described. The results can also offer an explanation to the reported increased sensitivity to the toxic effects of aluminium in the neonate. Speciation studies on normal plasma has shown the balance between high and low molecular weight species of gallium to be influenced by many physiological factors. There appears to be a fine equilibrium between both species which can be altered without any great difficulty. Therefore, in the diseased groups studied, it is possible that there are subtle biochemical changes within the circulatory system to affect the equilibrium which results in an increased low molecular weight species of aluminium. Furthermore, it has been demonstrated that there is a group of normal controls with no clinical signs of Alzheimer's or Parkinson's disease which have reduced transferrin binding. This indicates there is a population of healthy people who are at risk to the development of either disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Angiopoietin-1 (Ang-1) is an angiogenic growth factor that activates Tie-2 and integrins to promote vessel wall remodeling. The recent finding of the potential proatherogenic effects of Ang-1 prompted us to investigate whether Ang-1 promotes monocyte chemotaxis, endothelial binding, and transendothelial migration, key events in the progression of atherosclerosis. Here, we show that Ang-1 induces chemotaxis of monocytes in a manner that is independent of Tie-2 and integrin binding but dependent on phosphoinositide 3-kinase and heparin. In addition, Ang-1 promoted phosphoinositide 3-kinase-dependent binding of monocytes to endothelial monolayers and stimulated transendothelial migration. Fluorescence-activated cell sorting analysis showed that exogenous Ang-1 adheres directly to monocytes as well as to human umbilical endothelial cells, but neither Tie-2 mRNA nor protein were expressed by primary monocytes. Although Ang-1 binding to human umbilical endothelial cells was partially Tie-2 and integrin dependent, Ang-1 binding to monocytes was independent of these factors. Finally, preincubation of monocytes with soluble heparin abrogated Ang-1 binding to monocytes and migration, and partially prevented Ang-1 binding to human umbilical endothelial cells. In summary, Ang-1 induces chemotaxis of monocytes by a mechanism that is dependent on phosphoinositide 3-kinase and heparin but independent of Tie-2 and integrins. The ability of Ang-1 to recruit monocytes suggests it may play a role in inflammatory angiogenesis and may promote atherosclerosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose of review: The roles of angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) during vascular development have been extensively investigated, as has been their role in controlling the responsiveness of the endothelium to exogenous cytokines. However, very little is known about the role of these vascular morphogenic molecules in the pathogenesis of atherosclerosis. Here, we summarize the recent research into angiopoietins in atherosclerosis. Recent findings: Angiopoietin-2 is a context-dependent agonist that protects against the development of arteriosclerosis in rat cardiac allograft. A recent study showed, contrary to expectations, that a single systemic administration of adenoviral Ang-2 to apoE-/- mice, fed a Western diet, reduced atherosclerotic lesion size and LDL oxidation in a nitric oxide synthase dependent manner. In contrast, overexpression of Ang-1 fails to protect from rat cardiac allograft due to smooth muscle cell activation. The potential proatherogenic effect of Ang-1 is further supported by the induction of chemotaxis of monocytes by Ang-1 in a manner that is independent of Tie-2 and integrin binding. These studies highlight the need for extensive research to better understand the role of angiopoietins in the cardiovascular setting. Summary: Ang-2 inhibits atherosclerosis by limiting LDL oxidation via stimulation of nitric oxide production. In contrast, Ang-1 can promote monocyte and neutrophil migration. The angiopoietin–Tie-2 system provides an important new target for modulating vascular function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In April 2007, the Biochemical Society held a meeting to compare and contrast ligand binding and activation of Family A and B GPCRs (G-protein-coupled receptors). Being the largest class, Family A GPCRs usually receive the most attention, although a previous Biochemical Society meeting has focused on Family B GPCRs. The aim of the present meeting was to bring researchers of both families together in order to identify commonalities between the two. The present article introduces the proceedings of the meeting, briefly commenting on the focus of each of the following articles. ©The Authors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The receptor for CGRP (calcitonin gene-related peptide) is a heterodimer between a GPCR (G-protein-coupled receptor), CLR (calcitonin receptor-like receptor) and an accessory protein, RAMP1 (receptor activity-modifying protein 1). Models have been produced of RAMP1 and CLR. It is likely that the C-terminus of CGRP interacts with the extracellular N-termini of CLR and RAMP1; the extreme N-terminus of CLR is particularly important and may interact directly with CGRP and also with RAMP1. The N-terminus of CGRP interacts with the TM (transmembrane) portion of the receptor; the second ECL (extracellular loop) is especially important. Receptor activation is likely to involve the relative movements of TMs 3 and 6 to create a G-protein-binding pocket, as in Family A GPCRs. Pro321 in TM6 appears to act as a pivot. At the base of TMs 2 and 3, Arg151, His155 and Glu211 may form a loose equivalent of the Family A DRY (Asp-Arg-Tyr) motif. Although the details of this proposed activation mechanism clearly do not apply to all Family B GPCRs, the broad outlines may be conserved. ©The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibronectin (FN) deposition mediated by fibroblasts is an important process in matrix remodeling and wound healing. By monitoring the deposition of soluble biotinylated FN, we show that the stress-induced TG-FN matrix, a matrix complex of tissue transglutaminase (TG2) with its high affinity binding partner FN, can increase both exogenous and cellular FN deposition and also restore it when cell adhesion is interrupted via the presence of RGD-containing peptides. This mechanism does not require the transamidase activity of TG2 but is activated through an RGD-independent adhesion process requiring a heterocomplex of TG2 and FN and is mediated by a syndecan-4 and ß1 integrin co-signaling pathway. By using a5 null cells, ß1 integrin functional blocking antibody, and a a5ß1 integrin targeting peptide A5-1, we demonstrate that the a5 and ß1 integrins are essential for TG-FN to compensate RGD-induced loss of cell adhesion and FN deposition. The importance of syndecan-2 in this process was shown using targeting siRNAs, which abolished the compensation effect of TG-FN on the RGD-induced loss of cell adhesion, resulting in disruption of actin skeleton formation and FN deposition. Unlike syndecan-4, syndecan-2 does not interact directly with TG2 but acts as a downstream effector in regulating actin cytoskeleton organization through the ROCK pathway. We demonstrate that PKCa is likely to be the important link between syndecan-4 and syndecan-2 signaling and that TG2 is the functional component of the TG-FN heterocomplex in mediating cell adhesion via its direct interaction with heparan sulfate chains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: Characterization of the representative protozoan Acanthamoeba polyphaga surface carbohydrate exposure by a novel combination of flow cytometry and ligand-receptor analysis. Methods and Results: Trophozoite and cyst morphological forms were exposed to a panel of FITC-lectins. Population fluorescence associated with FITC-lectin binding to acanthamoebal surface moieties was ascertained by flow cytometry. Increasing concentrations of representative FITC-lectins, saturation binding and determination of K d and relative Bmax values were employed to characterize carbohydrate residue exposure. FITC-lectins specific for N-acetylglucosamine, N-acetylgalactosamine and mannose/glucose were readily bound by trophozoite and cyst surfaces. Minor incremental increases in FITC-lectin concentration resulted in significant differences in surface fluorescence intensity and supported the calculation of ligand-binding determinants, Kd and relative B max, which gave a trophozoite and cyst rank order of lectin affinity and surface receptor presence. Conclusions: Trophozoites and cysts expose similar surface carbohydrate residues, foremost amongst which is N-acetylglucosamine, in varying orientation and availability. Significance and Impact of the Study: The outlined versatile combination of flow cytometry and ligand-receptor analysis allowed the characterization of surface carbohydrate exposure by protozoan morphological forms and in turn will support a valid comparison of carbohydrate exposure by other single-cell protozoa and eucaryotic microbes analysed in the same manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterotropic association of tissue transglutaminase (TG2) with extracellular matrix-associated fibronectin (FN) can restore the adhesion of fibroblasts when the integrin-mediated direct binding to FN is impaired using RGD-containing peptide. We demonstrate that the compensatory effect of the TG-FN complex in the presence of RGD-containing peptides is mediated by TG2 binding to the heparan sulfate chains of the syndecan-4 cell surface receptor. This binding mediates activation of protein kinase Ca (PKCa) and its subsequent interaction with ß1 integrin since disruption of PKCa binding to ß1 integrins with a cell-permeant competitive peptide inhibits cell adhesion and the associated actin stress fiber formation. Cell signaling by this process leads to the activation of focal adhesion kinase and ERK1/2 mitogen-activated protein kinases. Fibroblasts deficient in Raf-1 do not respond fully to the TG-FN complex unless either the full-length kinase competent Raf-1 or the kinase-inactive domain of Raf-1 is reintroduced, indicating the involvement of the Raf-1 protein in the signaling mechanism. We propose a model for a novel RGD-independent cell adhesion process that could be important during tissue injury and/or remodeling whereby TG-FN binding to syndecan-4 activates PKCa leading to its association with ß1 integrin, reinforcement of actin-stress fiber organization, and MAPK pathway activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The region of tenascin-C containing only alternately spliced fibronectin type-III repeat D (fnD) increases neurite outgrowth by itself and also as part of tenascin-C. We previously localized the active site within fnD to an eight amino acid sequence unique to tenascin-C, VFDNFVLK, and showed that the amino acids FD and FV are required for activity. The purpose of this study was to identify the neuronal receptor that interacts with VFDNFVLK and to investigate the hypothesis that FD and FV are important for receptor binding. Function-blocking antibodies against both alpha7 and beta1 integrin subunits were found to abolish VFDNFVLK-mediated process extension from cerebellar granule neurons. VFDNFVLK but not its mutant, VSPNGSLK, induced clustering of neuronal beta1 integrin immunoreactivity. This strongly implicates FD and FV as important structural elements for receptor activation. Moreover, biochemical experiments revealed an association of the alpha7beta1 integrin with tenascin-C peptides containing the VFDNFVLK sequence but not with peptides with alterations in FD and/or FV. These findings are the first to provide evidence that the alpha7beta1 integrin mediates a response to tenascin-C and the first to demonstrate a functional role for the alpha7beta1 integrin receptor in CNS neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acanthamoeba polyphaga trophozoites bind yeast cells of Candida albicans isolates within a few hours, leaving few cells in suspension or still attached to trophozoite surfaces. The nature of yeast cell recognition, mediated by an acanthamoebal trophozoite mannose binding protein is confirmed by experiments utilizing concentration dependent mannose hapten blocking. Similarly, acapsulate cells of Cryptococcus neoformans are also bound within a relatively short timescale. However, even after protracted incubation many capsulate cells of Cryptococcus remain in suspension, suggesting that the capsulate cell form of this species is not predated by acanthamoebal trophozoites. Further aspects of the association of Acanthamoeba and fungi are apparent when studying their interaction with conidia of the biocontrol agent Coniothyrium minitans. Conidia which readily bind with increasing maturity of up to 42 days, were little endocytosed and even released. Cell and conidial surface mannose as determined by FITC-lectin binding, flow cytometry with associated ligand binding analysis and hapten blocking studies demonstrates the following phenomena. Candida isolates and acapsulate Cryptococcus expose most mannose, while capsulate Cryptococcus cells exhibit least exposure commensurate with yeast cellular binding or lack of trophozoites. Conidia of Coniothyrium, albeit in a localized fashion, also manifest surface mannose exposure but as shown by Bmax values, in decreasing amounts with increasing maturity. Contrastingly such conidia experience greater trophozoite binding with maturation, thereby questioning the primacy of a trophozoite mannose-binding-protein recognition model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 5-HT3 receptors are members of the cys-loop family of ligand-gated ion channels. Two functional subtypes are known, the homomeric 5HT3A and the heteromeric 5HT3A/B receptors, which exhibit distinct biophysical characteristics but are difficult to differentiate pharmacologically. Atomic force microscopy has been used to determine the stoichiometry and architecture of the heteromeric 5HT3A/B receptor. Each subunit was engineered to express a unique C-terminal epitope tag, together with six sequential histidine residues to facilitate nickel affinity purification. The 5-HT3 receptors, ectopically expressed in HEK293 cells, were solubilised, purified and decorated with antibodies to the subunit specific epitope tags. Imaging of individual receptors by atomic force microscopy revealed a pentameric arrangement of subunits in the order BBABA, reading anti-clockwise when viewed from the extracellular face. Homology models for the heteromeric receptor were then constructed using both the electron microscopic structure of the nicotinic acetylcholine receptor, from Torpedo marmorata, and the X-ray crystallographic structure of the soluble acetylcholine binding protein, from Lymnaea stagnalis, as templates. These homology models were used, together with equivalent models constructed for the homomeric receptor, to interpret mutagenesis experiments designed to explore the minimal recognition differences of both the natural agonist, 5-HT, and the competitive antagonist, granisetron, for the two human receptor subtypes. The results of this work revealed that the 5-HT3B subunit residues within the ligand binding site, for both the agonist and antagonist, are accommodating to conservative mutations. They are consistent with the view that the 5-HT3A subunit provides the principal and the 5-HT38 subunit the complementary recognition interactions at the binding interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of agents with differing selectivity profiles for the non-a2 adrenoceptor binding site (NAIBS), imidazoline preferring receptor (IPR) and a2-adrenoceptor were employed in a series of behavioural and neurochemical experiments to determine a functional role for the former two sites. The highly selective NAIBS ligand RX801 077 produced an increase in rat brain extracellular noradrenaline (NA) levels, as determined by the technique of in vivo microdialysis, which may underlie its ability to produce a discriminable cue in the same species. This increase in NA may be due to a suggested link between the NAIBS and the monoamine oxidase inhibitor (MAOI) activity of RX801 077. For instance, the RX801 077 cue was substituted for by the MAOI drugs pargyline and moclobemide, which themselves down regulate NAIBS when administered chronically. RX811 059 substituted for the RX801 077 cue which may be due its ability to stimulate NA release via its activity as a highly selective a2-adrenoceptor antagonist. An effect upon NA output may also explain the ability of RX801 077 to 'mimic' the anti-immobility effect of the antidepressant drug desmethylimipramine (DMJ) in the forced swimming test. Further studies are therefore required to examine a possible role for the NAIBS in the treatment of depression. Discriminable cues were also produced by RX811 059 and the a2- adrenoceptor agonist clonidine, probably as a consequence of their respective ability to stimulate and inhibit NA output via their opposing activity at a2-adrenoceptors. The IPR has been suggested to play a role in mediating the hypotensive effect of clonidine, although a precise role was unable to be established for this site in the present studies due to the unavailability of highly selective IPA agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The process of binding of small ligands to dihydrofolate reductase protein has been investigated using all-atom molecular dynamics simulations. The existence of a mechanism that facilitates the search of the binding site by the ligand is demonstrated. The mechanism consists of ligand diffusing on the protein’s surface. It has been discussed in the literature before, but has not been explicitly confirmed for realistic molecular systems. The strength of this nonspecific binding is roughly estimated and found to be essential for the binding kinetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CGRP receptor binding may be measured using homogenates of cell membranes or intact cells. Here a microcentrifugation-based assay is described that utilizes radioiodinated CGRP in displacement studies to determine the binding parameters for any ligand that interacts with CGRP receptors. A similar assay is described for binding to cultured cells. The protocols may be adapted for other radioligands or for filtration-based assays. The main problems with CGRP binding assays can usually be traced to degradation of the radioligand or displacing ligands. Also, some cell lines fail to express CGRP receptors after extensive passage. CGRP binding assays provide a rapid and easy approach for distinguishing between receptors for CGRP and related peptides such as adrenomedullin and amylin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The calcitonin gene related peptide (CGRP) is a 37 amino acid neuropeptide. Its receptor is a heterodimeric complex of calcitonin receptor-like receptor (CLR) – a family B G-protein coupled receptor – and a single-pass transmembrane protein, receptoractivity modifying protein 1 (RAMP1). Here, we identify residues, within the N-terminal extracellular domain (ECD) of CLR, potentially involved in ligand binding.Certain residues presumed to be possible sites of contact for the CGRP were picked from the CLR/RAMP1 ECD crystal structure (PDB 3N7S). Residues were mutated to alanine (A) bysite-directed mutagenesis (QuikChangeTM, Stratagene). Mutants were analysed for their ability to stimulate cAMP and cell surface expression as previously described [1]. All mutants showed reduced potency, though to varying degrees as indicated by their pEC50 values. W69A and D70Ashowed significant reduction in cell surface expression.These findings suggest that these residues are important for the interaction of CGRP with its receptor. W69A and D70A, part of the WDG motif of family B GPCRs, are thought to rather play a role in receptor stability [2]. The data is consistent with CGRP binding in agroove between CLR and RAMP1. This project was supported byAston School of Life and Health Sciences.References1. Barwell J, Conner A & Poyner D (2011) Extracellular loops 1and 3 and their associated transmembrane regions of the calcitonin receptor-like receptor are needed for CGRP receptor function. Biochim Biophys Acta 1813, 1906–1916.2. Kumar S, Pioszak A, Zhang C et al. (2011) Crystal Structure of the PAC1R Extracellular Domain Unifies a Consensus Fold for Hormone Recognition by Class B G-Protein Cou-pled Receptors. PLoS One 6, e19682