9 resultados para Integrated Co rich CoPtP

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process framework comprises three phases, as follows: scope the supply chain/network; identify the options for supply system architecture and select supply system architecture. It facilitates a structured approach that analyses the supply chain/network contextual characteristics, in order to ensure alignment with the appropriate supply system architecture. The process framework was derived from comprehensive literature review and archival case study analysis. The review led to the classification of supply system architectures according to their orientation, whether integrated; partially integrated; co-ordinated or independent. The classification was combined with the characteristics that influence the selection of supply system architecture to encapsulate the conceptual framework. It builds upon existing frameworks and methodologies by focusing on structured procedure; supporting project management; facilitating participation and clarifying point of entry. The process framework was initially tested in three case study applications from the food, automobile and hand tool industries. A variety of industrial settings was chosen to illustrate transferability. The case study applications indicate that the process framework is a valid approach to the problem; however, further testing is required. In particular, the use of group support system technologies to support the process and the steps involving the participation of software vendors need further testing. However, the process framework can be followed due to the clarity of its presentation. It considers the issue of timing by including alternative decision-making techniques, dependent on the constraints. It is useful for ensuring a sound business case is developed, with supporting documentation and analysis that identifies the strategic and functional requirements of supply system architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of CoFe2O4 nanoparticles have been prepared via co-precipitation and controlled thermal sintering, with tunable diameters spanning 7–50 nm. XRD confirms that the inverse spinel structure is adopted by all samples, while XPS shows their surface compositions depend on calcination temperature and associated particle size. Small (<20 nm) particles expose Fe3+ enriched surfaces, whereas larger (∼50 nm) particles formed at higher temperatures possess Co:Fe surface compositions close to the expected 1:2 bulk ratio. A model is proposed in which smaller crystallites expose predominately (1 1 1) facets, preferentially terminated in tetrahedral Fe3+ surface sites, while sintering favours (1 1 0) and (1 0 0) facets and Co:Fe surface compositions closer to the bulk inverse spinel phase. All materials were active towards the gas-phase methylation of phenol to o-cresol at temperatures as low as 300 °C. Under these conditions, materials calcined at 450 and 750 °C exhibit o-cresol selectivities of ∼90% and 80%, respectively. Increasing either particle size or reaction temperature promotes methanol decomposition and the evolution of gaseous reductants (principally CO and H2), which may play a role in CoFe2O4 reduction and the concomitant respective dehydroxylation of phenol to benzene. The degree of methanol decomposition, and consequent H2 or CO evolution, appears to correlate with surface Co2+ content: larger CoFe2O4 nanoparticles have more Co rich surfaces and are more active towards methanol decomposition than their smaller counterparts. Reduction of the inverse spinel surface thus switches catalysis from the regio- and chemo-selective methylation of phenol to o-cresol, towards methanol decomposition and phenol dehydroxylation to benzene. At 300 °C sub-20 nm CoFe2O4 nanoparticles are less active for methanol decomposition and become less susceptible to reduction than their 50 nm counterparts, favouring a high selectivity towards methylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent changes to the legislation on chemicals and cosmetics testing call for a change in the paradigm regarding the current 'whole animal' approach for identifying chemical hazards, including the assessment of potential neurotoxins. Accordingly, since 2004, we have worked on the development of the integrated co-culture of post-mitotic, human-derived neurons and astrocytes (NT2.N/A), for use as an in vitro functional central nervous system (CNS) model. We have used it successfully to investigate indicators of neurotoxicity. For this purpose, we used NT2.N/A cells to examine the effects of acute exposure to a range of test chemicals on the cellular release of brain-derived neurotrophic factor (BDNF). It was demonstrated that the release of this protective neurotrophin into the culture medium (above that of control levels) occurred consistently in response to sub-cytotoxic levels of known neurotoxic, but not non-neurotoxic, chemicals. These increases in BDNF release were quantifiable, statistically significant, and occurred at concentrations below those at which cell death was measureable, which potentially indicates specific neurotoxicity, as opposed to general cytotoxicity. The fact that the BDNF immunoassay is non-invasive, and that NT2.N/A cells retain their functionality for a period of months, may make this system useful for repeated-dose toxicity testing, which is of particular relevance to cosmetics testing without the use of laboratory animals. In addition, the production of NT2.N/A cells without the use of animal products, such as fetal bovine serum, is being explored, to produce a fully-humanised cellular model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many manufacturing companies have long endured the problems associated with the presence of `islands of automation'. Due to rapid computerisation, `islands' such as Computer-Aided Design (CAD), Computer-Aided Manufacturing (CAM), Flexible Manufacturing Systems (FMS) and Material Requirement Planning (MRP), have emerged, and with a lack of co-ordination, often lead to inefficient performance of the overall system. The main objective of Computer-Integrated Manufacturing (CIM) technology is to form a cohesive network between these islands. Unfortunately, a commonly used approach - the centralised system approach, has imposed major technical constraints and design complication on development strategies. As a consequence, small companies have experienced difficulties in participating in CIM technology. The research described in this thesis has aimed to examine alternative approaches to CIM system design. Through research and experimentation, the cellular system approach, which has existed in the form of manufacturing layouts, has been found to simplify the complexity of an integrated manufacturing system, leading to better control and far higher system flexibility. Based on the cellular principle, some central management functions have also been distributed to smaller cells within the system. This concept is known, specifically, as distributed planning and control. Through the development of an embryo cellular CIM system, the influence of both the cellular principle and the distribution methodology have been evaluated. Based on the evidence obtained, it has been concluded that distributed planning and control methodology can greatly enhance cellular features within an integrated system. Both the cellular system approach and the distributed control concept will therefore make significant contributions to the design of future CIM systems, particularly systems designed with respect to small company requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In response to the increasing international competitiveness, many manufacturing businesses are rethinking their management strategies and philosophies towards achieving a computer integrated environment. The explosive growth in Advanced Manufacturing Technology (AMI) has resulted in the formation of functional "Islands of Automation" such as Computer Aided Design (CAD), Computer Aided Manufacturing (CAM), Computer Aided Process Planning (CAPP) and Manufacturing Resources Planning (MRPII). This has resulted in an environment which has focussed areas of excellence and poor overall efficiency, co-ordination and control. The main role of Computer Integrated Manufacturing (CIM) is to integrate these islands of automation and develop a totally integrated and controlled environment. However, the various perceptions of CIM, although developing, remain focussed on a very narrow integration scope and have consequently resulted in mere linked islands of automation with little improvement in overall co-ordination and control. This thesis, that is the research described within, develops and examines a more holistic view of CIM, which is based on the integration of various business elements. One particular business element, namely control, has been shown to have a multi-facetted and underpinning relationship with the CIM philosophy. This relationship impacts various CIM system design aspects including the CIM business analysis and modelling technique, the specification of systems integration requirements, the CIM system architectural form and the degree of business redesign. The research findings show that fundamental changes to CIM system design are required; these are incorporated in a generic CIM design methodology. The affect and influence of this holistic view of CIM on a manufacturing business has been evaluated through various industrial case study applications. Based on the evidence obtained, it has been concluded that this holistic, control based approach to CIM can provide a greatly improved means of achieving a totally integrated and controlled business environment. This generic CIM methodology will therefore make a significant contribution to the planning, modelling, design and development of future CIM systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The airway epithelium is the first point of contact in the lung for inhaled material, including infectious pathogens and particulate matter, and protects against toxicity from these substances by trapping and clearance via the mucociliary escalator, presence of a protective barrier with tight junctions and initiation of a local inflammatory response. The inflammatory response involves recruitment of phagocytic cells to neutralise and remove and invading materials and is oftern modelled using rodents. However, development of valid in vitro airway epithelial models is of great importance due to the restrictions on animal studies for cosmetic compound testing implicit in the 7th amendment to the European Union Cosmetics Directive. Further, rodent innate immune responses have fundamental differences to human. Pulmonary endothelial cells and leukocytes are also involved in the innate response initiated during pulmonary inflammation. Co-culture models of the airways, in particular where epithelial cells are cultured at air liquid interface with the presence of tight junctions and differentiated mucociliary cells, offer a solution to this problem. Ideally validated models will allow for detection of early biomarkers of response to exposure and investigation into inflammatory response during exposure. This thesis describes the approaches taken towards developing an in vitro epithelial/endothelial cell model of the human airways and identification biomarkers of response to exposure to xenobiotics. The model comprised normal human primary microvascular endothelial cells and the bronchial epithelial cell line BEAS-2B or normal human bronchial epithelial cells. BEAS-2B were chosen as their characterisation at air liquid interface is limited but they are robust in culture, thereby predicted to provide a more reliable test system. Proteomics analysis was undertaken on challenged cells to investigate biomarkers of exposure. BEAS-2B morphology was characterised at air liquid interface compared with normal human bronchial epithelial cells. The results indicate that BEAS-2B cells at an air liquid interface form tight junctions as shown by expression of the tight junction protein zonula occludens-1. To this author’s knowledge this is the first time this result has been reported. The inflammatory response of BEAS-2B (measured as secretion of the inflammatory mediators interleukin-8 and -6) air liquid interface mono-cultures to Escherichia coli lipopolysaccharide or particulate matter (fine and ultrafine titanium dioxide) was comparable to published data for epithelial cells. Cells were also exposed to polymers of “commercial interest” which were in the nanoparticle range (and referred to particles hereafter). BEAS-2B mono-cultures showed an increased secretion of inflammatory mediators after challenge. Inclusion of microvascular endothelial cells resulted in protection against LPS- and particle- induced epithelial toxicity, measured as cell viability and inflammatory response, indicating the importance of co-cultures for investigations into toxicity. Two-dimensional proteomic analysis of lysates from particle-challenged cells failed to identify biomarkers of toxicity due to assay interference and experimental variability. Separately, decreased plasma concentrations of serine protease inhibitors, and the negative acute phase proteins transthyretin, histidine-rich glycoprotein and alpha2-HS glycoprotein were identified as potential biomarkers of methyl methacrylate/ethyl methacrylate/butylacrylate treatment in rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Web-based distributed modelling architectures are gaining increasing recognition as potentially useful tools to build holistic environmental models, combining individual components in complex workflows. However, existing web-based modelling frameworks currently offer no support for managing uncertainty. On the other hand, the rich array of modelling frameworks and simulation tools which support uncertainty propagation in complex and chained models typically lack the benefits of web based solutions such as ready publication, discoverability and easy access. In this article we describe the developments within the UncertWeb project which are designed to provide uncertainty support in the context of the proposed ‘Model Web’. We give an overview of uncertainty in modelling, review uncertainty management in existing modelling frameworks and consider the semantic and interoperability issues raised by integrated modelling. We describe the scope and architecture required to support uncertainty management as developed in UncertWeb. This includes tools which support elicitation, aggregation/disaggregation, visualisation and uncertainty/sensitivity analysis. We conclude by highlighting areas that require further research and development in UncertWeb, such as model calibration and inference within complex environmental models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of organically modified clay on the morphology, rheology and mechanical properties of high-density polyethylene (HDPE) and polyamide 6 (PA6) blends (HDPE/PA6 = 75/25 parts) is studied. Virgin and filled blends were prepared by melt compounding the constituents using a twin-screw extruder. The influence of the organoclay on the morphology of the hybrid was deeply investigated by means of wide-angle X-ray diffractometry, transmission and scanning electron microscopies and quantitative extraction experiments. It has been found that the organoclay exclusively places inside the more hydrophilic polyamide phase during the melt compounding. The extrusion process promotes the formation of highly elongated and separated organoclay-rich PA6 domains. Despite its low volume fraction, the filled minor phase eventually merges once the extruded pellets are melted again, giving rise to a co-continuous microstructure. Remarkably, such a morphology persists for long time in the melt state. A possible compatibilizing action related to the organoclay has been investigated by comparing the morphology of the hybrid blend with that of a blend compatibilized using an ethylene–acrylic acid (EAA) copolymer as a compatibilizer precursor. The former remains phase separated, indicating that the filler does not promote the enhancement of the interfacial adhesion. The macroscopic properties of the hybrid blend were interpreted in the light of its morphology. The melt state dynamics of the materials were probed by means of linear viscoelastic measurements. Many peculiar rheological features of polymer-layered silicate nanocomposites based on single polymer matrix were detected for the hybrid blend. The results have been interpreted proposing the existence of two distinct populations of dynamical species: HDPE not interacting with the filler, and a slower species, constituted by the organoclay-rich polyamide phase, which slackened dynamics stabilize the morphology in the melt state. In the solid state, both the reinforcement effect of the filler and the co-continuous microstructure promote the enhancement of the tensile modulus. Our results demonstrate that adding nanoparticles to polymer blends allows tailoring the final properties of the hybrid, potentially leading to high-performance materials which combine the advantages of polymer blends and the merits of polymer nanocomposites.