22 resultados para Integral turbulent time scales

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer simulated trajectories of bulk water molecules form complex spatiotemporal structures at the picosecond time scale. This intrinsic complexity, which underlies the formation of molecular structures at longer time scales, has been quantified using a measure of statistical complexity. The method estimates the information contained in the molecular trajectory by detecting and quantifying temporal patterns present in the simulated data (velocity time series). Two types of temporal patterns are found. The first, defined by the short-time correlations corresponding to the velocity autocorrelation decay times (â‰0.1â€ps), remains asymptotically stable for time intervals longer than several tens of nanoseconds. The second is caused by previously unknown longer-time correlations (found at longer than the nanoseconds time scales) leading to a value of statistical complexity that slowly increases with time. A direct measure based on the notion of statistical complexity that describes how the trajectory explores the phase space and independent from the particular molecular signal used as the observed time series is introduced. © 2008 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluidized bed spray granulators (FBMG) are widely used in the process industry for particle size growth; a desirable feature in many products, such as granulated food and medical tablets. In this paper, the first in a series of four discussing the rate of various microscopic events occurring in FBMG, theoretical analysis coupled with CFD simulations have been used to predict granule–granule and droplet–granule collision time scales. The granule–granule collision time scale was derived from principles of kinetic theory of granular flow (KTGF). For the droplet–granule collisions, two limiting models were derived; one is for the case of fast droplet velocity, where the granule velocity is considerable lower than that of the droplet (ballistic model) and another for the case where the droplet is traveling with a velocity similar to the velocity of the granules. The hydrodynamic parameters used in the solution of the above models were obtained from the CFD predictions for a typical spray fluidized bed system. The granule–granule collision rate within an identified spray zone was found to fall approximately within the range of 10-2–10-3 s, while the droplet–granule collision was found to be much faster, however, slowing rapidly (exponentially) when moving away from the spray nozzle tip. Such information, together with the time scale analysis of droplet solidification and spreading, discussed in part II and III of this study, are useful for probability analysis of the various event occurring during a granulation process, which then lead to be better qualitative and, in part IV, quantitative prediction of the aggregation rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiber lasers operating via Raman gain or based on rare-earth-doped active fibers are widely used as sources of CW radiation. However, these lasers are only quasi-CW: their intensity fluctuates strongly on short time scales. Here the framework of the complex Ginzburg-Landau equations, which are well known as an efficient model of mode-locked fiber lasers, is applied for the description of quasi-CW fiber lasers. The vector Ginzburg-Landau model of a Raman fiber laser describes the experimentally observed turbulent-like intensity dynamics, as well as polarization rogue waves. Our results open debates about the common underlying physics of operation of very different laser types - quasi-CW lasers and passively mode-locked lasers. Fiber lasers operating via Raman gain or based on rare-earth-doped active fibers are widely used as sources of CW radiation. However, these lasers are only quasi-CW: their intensity fluctuates strongly on short time scales. Here the framework of the complex Ginzburg-Landau equations, which are well known as an efficient model of mode-locked fiber lasers, is applied for the description of quasi-CW fiber lasers. The vector Ginzburg-Landau model of a Raman fiber laser describes the experimentally observed turbulent-like intensity dynamics, as well as polarization rogue waves. Our results open debates about the common underlying physics of operation of very different laser types - quasi-CW lasers and passively mode-locked lasers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use advanced statistical tools of time-series analysis to characterize the dynamical complexity of the transition to optical wave turbulence in a fiber laser. Ordinal analysis and the horizontal visibility graph applied to the experimentally measured laser output intensity reveal the presence of temporal correlations during the transition from the laminar to the turbulent lasing regimes. Both methods unveil coherent structures with well-defined time scales and strong correlations both, in the timing of the laser pulses and in their peak intensities. Our approach is generic and may be used in other complex systems that undergo similar transitions involving the generation of extreme fluctuations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatiooral intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporal dynamics of Raman fibre lasers tend to have very complex nature, owing to great cavity lengths and high nonlinearity, being stochastic on short time scales and quasi-continuous on longer time scales. Generally fibre laser intensity dynamics is represented by one-dimensional time-series, which in case of quasi-continuous wave generation in Raman fibre lasers gives little insight into the processes underlying the operation of a laser. New methods of analysis and data representation could help to uncover the underlying physical processes, understand the dynamics or improve the performance of the system. Using intrinsic periodicity of laser radiation, one dimensional intensity time series of a Raman fibre laser was analysed over fast and slow variation time. This allowed to experimentally observe various spatio-temporal regimes of generation, such as laminar, turbulent, partial mode-lock, as well as transitions between them and identify the mechanisms responsible for the transitions. Great cavity length and high nonlinearity also make it difficult to achieve stable high repetition rate mode-locking in Raman fibre lasers. Using Faraday parametric instability in extremely simple linear cavity experimental configuration, a very high order harmonic mode-locking was achieved in ò.ò kmlong Raman fibre laser. The maximum achieved pulse repetition rate was 12 GHz, with 7.3 ps long Gaussian shaped pulses. There is a new type of random lasers – random distributed feedback Raman fibre laser, which temporal properties cannot be controlled by conventionalmode-locking or Q-switch techniques and mechanisms. By adjusting the pump configuration, a very stable pulsed operation of random distributed feedback Raman fibre laser was achieved. Pulse duration varied in the range from 50 to 200 μs depending on the pump power and the cavity length. Pulse repetition rate scaling on the parameters of the system was experimentally identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibre lasers have been shown to manifest a laminar-to-turbulent transition when increasing its pump power. In order to study the dynamical complexity of this transition we use advanced statistical tools of time-series analysis. We apply ordinal analysis and the horizontal visibility graph to the experimentally measured laser output intensity. This reveal the presence of temporal correlations during the transition from the laminar to the turbulent lasing regimes. Both methods allow us to unveil coherent structures with well defined time-scales and strong correlations both, in the timing of the laser pulses and in their peak intensities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular transport in phase space is crucial for chemical reactions because it defines how pre-reactive molecular configurations are found during the time evolution of the system. Using Molecular Dynamics (MD) simulated atomistic trajectories we test the assumption of the normal diffusion in the phase space for bulk water at ambient conditions by checking the equivalence of the transport to the random walk model. Contrary to common expectations we have found that some statistical features of the transport in the phase space differ from those of the normal diffusion models. This implies a non-random character of the path search process by the reacting complexes in water solutions. Our further numerical experiments show that a significant long period of non-stationarity in the transition probabilities of the segments of molecular trajectories can account for the observed non-uniform filling of the phase space. Surprisingly, the characteristic periods in the model non-stationarity constitute hundreds of nanoseconds, that is much longer time scales compared to typical lifetime of known liquid water molecular structures (several picoseconds).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore the dynamics of a periodically driven Duffing resonator coupled elastically to a van der Pol oscillator in the case of 1?:?1 internal resonance in the cases of weak and strong coupling. Whilst strong coupling leads to dominating synchronization, the weak coupling case leads to a multitude of complex behaviours. A two-time scales method is used to obtain the frequency-amplitude modulation. The internal resonance leads to an antiresonance response of the Duffing resonator and a stagnant response (a small shoulder in the curve) of the van der Pol oscillator. The stability of the dynamic motions is also analyzed. The coupled system shows a hysteretic response pattern and symmetry-breaking facets. Chaotic behaviour of the coupled system is also observed and the dependence of the system dynamics on the parameters are also studied using bifurcation analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Future sensor arrays will be composed of interacting nonlinear components with complex behaviours with no known analytic solutions. This paper provides a preliminary insight into the expected behaviour through numerical and analytical analysis. Specically, the complex behaviour of a periodically driven nonlinear Duffing resonator coupled elastically to a van der Pol oscillator is investigated as a building block in a 2D lattice of such units with local connectivity. An analytic treatment of the 2-device unit is provided through a two-time-scales approach and the stability of the complex dynamic motion is analysed. The pattern formation characteristics of a 2D lattice composed of these units coupled together through nearest neighbour interactions is analysed numerically for parameters appropriate to a physical realisation through MEMS devices. The emergent patterns of global and cluster synchronisation are investigated with respect to system parameters and lattice size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The case for monitoring large-scale sea level variability is established in the context of the estimation of the extent of anthropogenic climate change. Satellite altimeters are identified as having the potential to monitor this change with high resolution and accuracy. Possible sources of systematic errors and instabilities in these instruments which would be hurdles to the most accurate monitoring of such ocean signals are examined. Techniques for employing tide gauges to combat such inaccuracies are proposed and developed. The tide gauge at Newhaven in Sussex is used in conjunction with the nearby satellite laser ranger and high-resolution ocean models to estimate the absolute bias of the TOPEX, Poseidon, ERS 1 and ERS 2 altimeters. The theory which underlies the augmentation of altimeter measurements with tide gauge data is developed. In order to apply this, the tide gauges of the World Ocean Circulation Experiment are assessed and their suitability for altimeter calibration is determined. A reliable subset of these gauges is derived. A method of intra-altimeter calibration is developed using these tide gauges to remove the effect of variability over long time scales. In this way the long-term instability in the TOPEX range measurement is inferred and the drift arising from the on-board ultra stable oscillator is thus detected. An extension to this work develops a method for inter-altimeter calibration, allowing the systematic differences between unconnected altimeters to be measured. This is applied to the TOPEX and ERS 1 altimeters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analyzing network failures caused by hardware faults or overload, where the network reaction was modeled as rerouting of traffic away from failed or congested elements. Here we model another type of the network reaction to congestion - a sharp reduction of the input traffic rate through congested routes which occurs on much shorter time scales. We consider the onset of congestion in the Internet where local mismatch between demand and capacity results in traffic losses and show that it can be described as a phase transition characterized by strong non-Gaussian loss fluctuations at a mesoscopic time scale. The fluctuations, caused by noise in input traffic, are exacerbated by the heterogeneous nature of the network manifested in a scale-free load distribution. They result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible. © Copyright EPLA, 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested 44 participants with respect to their working memory (WM) performance on alcohol-related versus neutral visual stimuli. Previously an alcohol attentional bias (AAB) had been reported using these stimuli, where the attention of frequent drinkers was automatically drawn toward alcohol-related items (e.g., beer bottle). The present study set out to provide evidence for an alcohol memory bias (AMB) that would persist over longer time-scales than the AAB. The WM task we used required memorizing 4 stimuli in their correct locations and a visual interference task was administered during a 4-sec delay interval. A subsequent probe required participants to indicate whether a stimulus was shown in the correct or incorrect location. For each participant we calculated a drinking score based on 3 items derived from the Alcohol Use Questionnaire, and we observed that higher scorers better remembered alcohol-related images compared with lower scorers, particularly when these were presented in their correct locations upon recall. This provides first evidence for an AMB. It is important to highlight that this effect persisted over a 4-sec delay period including a visual interference task that erased iconic memories and diverted attention away from the encoded items, thus the AMB cannot be reduced to the previously reported AAB. Our finding calls for further investigation of alcohol-related cognitive biases in WM, and we propose a preliminary model that may guide future research. © 2012 American Psychological Association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of linear instability resulting in rotating sheared accretion flows has remained a controversial subject for a long time. While some explanations of such non-normal transient growth of disturbances in the Rayleigh stable limit were available for magnetized accretion flows, similar instabilities in the absence of magnetic perturbations remained unexplained. This dichotomy was resolved in two recent publications by Chattopadhyay and co-workers [Mukhopadhyay and Chattopadhyay, J. Phys. A 46, 035501 (2013)1751-811310.1088/1751-8113/46/3/035501; Nath, Phys. Rev. E 88, 013010 (2013)PLEEE81539-375510.1103/PhysRevE.88.013010] where it was shown that such instabilities, especially for nonmagnetized accretion flows, were introduced through interaction of the inherent stochastic noise in the system (even a "cold" accretion flow at 3000 K is too "hot" in the statistical parlance and is capable of inducing strong thermal modes) with the underlying Taylor-Couette flow profiles. Both studies, however, excluded the additional energy influx (or efflux) that could result from nonzero cross correlation of a noise perturbing the velocity flow, say, with the noise that is driving the vorticity flow (or equivalently the magnetic field and magnetic vorticity flow dynamics). Through the introduction of such a time symmetry violating effect, in this article we show that nonzero noise cross correlations essentially renormalize the strength of temporal correlations. Apart from an overall boost in the energy rate (both for spatial and temporal correlations, and hence in the ensemble averaged energy spectra), this results in mutual competition in growth rates of affected variables often resulting in suppression of oscillating Alfven waves at small times while leading to faster saturations at relatively longer time scales. The effects are seen to be more pronounced with magnetic field fluxes where the noise cross correlation magnifies the strength of the field concerned. Another remarkable feature noted specifically for the autocorrelation functions is the removal of energy degeneracy in the temporal profiles of fast growing non-normal modes leading to faster saturation with minimum oscillations. These results, including those presented in the previous two publications, now convincingly explain subcritical transition to turbulence in the linear limit for all possible situations that could now serve as the benchmark for nonlinear stability studies in Keplerian accretion disks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive model of processes involved in femtosecond laser inscription and the subsequent structural material modification is developed. Different time scales of the pulse-plasma dynamics and thermo-mechanical relaxation allow for separate numerical treatments of these processes, while linking them by an energy transfer equation. The model is illustrated and analysed on examples of inscription in fused silica and the results are used to explain previous experimental observations. © 2007 Springer Science+Business Media, LLC.