4 resultados para Incremental learning
em Aston University Research Archive
Resumo:
In this paper, we focus on the design of bivariate EDAs for discrete optimization problems and propose a new approach named HSMIEC. While the current EDAs require much time in the statistical learning process as the relationships among the variables are too complicated, we employ the Selfish gene theory (SG) in this approach, as well as a Mutual Information and Entropy based Cluster (MIEC) model is also set to optimize the probability distribution of the virtual population. This model uses a hybrid sampling method by considering both the clustering accuracy and clustering diversity and an incremental learning and resample scheme is also set to optimize the parameters of the correlations of the variables. Compared with several benchmark problems, our experimental results demonstrate that HSMIEC often performs better than some other EDAs, such as BMDA, COMIT, MIMIC and ECGA. © 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present a new approach to ontology learning. Its basis lies in a dynamic and iterative view of knowledge acquisition for ontologies. The Abraxas approach is founded on three resources, a set of texts, a set of learning patterns and a set of ontological triples, each of which must remain in equilibrium. As events occur which disturb this equilibrium various actions are triggered to re-establish a balance between the resources. Such events include acquisition of a further text from external resources such as the Web or the addition of ontological triples to the ontology. We develop the concept of a knowledge gap between the coverage of an ontology and the corpus of texts as a measure triggering actions. We present an overview of the algorithm and its functionalities.
Resumo:
Purpose - This article examines the internationalisation of Tesco and extracts the salient lessons learned from this process. Design/methodology/ approach - This research draws on a dataset of 62 in-depth interviews with key executives, sell- and buy-side analysts and corporate advisers at the leading investment banks in the City of London to detail the experiences of Tesco's European expansion. Findings - The case study of Tesco illuminates a number of different dimensions of the company's international experience. It offers some new insights into learning in international distribution environments such as the idea that learning is facilitated by uncertainty or "shocks" in the international retail marketplace; the size of the domestic market may inhibit change and so disable international learning; and learning is not necessarily facilitated by step-by-step incremental approaches to expansion. Research limitations/implications - The paper explores learning from a rather broad perspective, although it is hoped that these parameters can be used to raise a new set of more detailed priorities for future research on international retail learning. It is also recognised that the data gathered for this case study focus on Tesco's European operations. Practical implications - This paper raises a number of interesting issues such as whether the extremities of the business may be a more appropriate place for management to experiment and test new retail innovations, and the extent to which retailers take self-reflection seriously. Originality/value - The paper applies a new theoretical learning perspective to capture the variety of experiences during the internationalisation process, thus addressing a major gap in our understanding of the whole internationalisation process. © Emerald Group Publishing Limited.
Resumo:
Most existing color-based tracking algorithms utilize the statistical color information of the object as the tracking clues, without maintaining the spatial structure within a single chromatic image. Recently, the researches on the multilinear algebra provide the possibility to hold the spatial structural relationship in a representation of the image ensembles. In this paper, a third-order color tensor is constructed to represent the object to be tracked. Considering the influence of the environment changing on the tracking, the biased discriminant analysis (BDA) is extended to the tensor biased discriminant analysis (TBDA) for distinguishing the object from the background. At the same time, an incremental scheme for the TBDA is developed for the tensor biased discriminant subspace online learning, which can be used to adapt to the appearance variant of both the object and background. The experimental results show that the proposed method can track objects precisely undergoing large pose, scale and lighting changes, as well as partial occlusion. © 2009 Elsevier B.V.