23 resultados para Homogeneous Turbulence
em Aston University Research Archive
Resumo:
We investigate the behaviour of the mutual friction force in finite temperature quantum turbulence in 4He, paying particular attention to the role of quantized vortex reconnections. Through the use of the vortex filament model, we produce three experimentally relevant types of vortex tangles in steady-state conditions, and examine through statistical analysis, how local properties of the tangle influence the mutual friction force. Finally, by monitoring reconnection events, we present evidence to indicate that vortex reconnections are the dominant mechanism for producing areas of high curvature and velocity leading to regions of high mutual friction, particularly for homogeneous and isotropic vortex tangles.
Resumo:
We study optical wave turbulence using as a particular example recently created ultralong-fiber laser. We show that the sign of the cavity dispersion has a critical impact on the spectral and temporal properties of generated radiation that are directly relevant to the fiber laser performance. For a normal dispersion, we observe an intermediate state with an extremely narrow spectrum condensate, which experiences an instability and a sharp transition to a strongly fluctuating regime with a wide spectrum and increased probability of spontaneous generation of large-amplitude pulses.
Resumo:
We present a mean-field model of cloud evolution that describes droplet growth due to condensation and collisions and droplet loss due to fallout. The model accounts for the effects of cloud turbulence both in a large-scale turbulent mixing and in a microphysical enhancement of condensation and collisions. The model allows for an effective numerical simulation by a scheme that is conservative in water mass and keeps accurate count of the number of droplets. We first study the homogeneous situation and determine how the rain-initiation time depends on the concentration of cloud condensation nuclei (CCN) and turbulence level. We then consider clouds with an inhomogeneous concentration of CCN and evaluate how the rain initiation time and the effective optical depth vary in space and time. We argue that over-seeding even a part of a cloud by small hygroscopic nuclei, one can substantially delay the onset and increase the amount of precipitation.
Resumo:
We consider turbulence within the Gross-Pitaevsky model and look into the creation of a coherent condensate via an inverse cascade originating at small scales. The growth of the condensate leads to a spontaneous breakdown of statistical symmetries of overcondensate fluctuations: First, isotropy is broken, then a series of phase transitions marks the changing symmetry from twofold to threefold to fourfold. We describe respective anisotropic flux flows in the k space. At the highest level reached, we observe a short-range positional and long-range orientational order (as in a hexatic phase). In other words, the more one pumps the system, the more ordered the system becomes. The phase transitions happen when the system is pumped by an instability term and does not occur when pumped by a random force. We thus demonstrate nonuniversality of an inverse-cascade turbulence with respect to the nature of small-scale forcing.
Resumo:
Previous research has indicated that schematic eyes incorporating aspheric surfaces but lacking gradient index are unable to model ocular spherical aberration and peripheral astigmatism simultaneously. This limits their use as wide-angle schematic eyes. This thesis challenges this assumption by investigating the flexibility of schematic eyes comprising aspheric optical surfaces and homogeneous optical media. The full variation of ocular component dimensions found in human eyes was established from the literature. Schematic eye parameter variants were limited to these dimensions. The levels of spherical aberration and peripheral astigmatism modelled by these schematic eyes were compared to the range of measured levels. These were also established from the literature. To simplify comparison of modelled and measured data, single value parameters were introduced; the spherical aberration function (SAF), and peripheral astigmatism function (PAF). Some ocular components variations produced a wide range of aberrations without exceeding the limits of human ocular components. The effect of ocular component variations on coma was also investigated, but no comparison could be made as no empirical data exists. It was demonstrated that by combined manipulation of a number of parameters in the schematic eyes it was possible to model all levels of ocular spherical aberration and peripheral astigmatism. However, the unique parameters of a human eye could not be obtained in this way, as a number of models could be used to produce the same spherical aberration and peripheral astigmatism, while giving very different coma levels. It was concluded that these schematic eyes are flexible enough to model the monochromatic aberrations tested, the absence of gradient index being compensated for by altering the asphericity of one or more surfaces.
Resumo:
We study numerically optical turbulence using the particular example of a recently created, ultra-long fibre laser. For normal fibre dispersion, we observed an intermediate state with an extremely narrow spectrum (condensate), which experiences instability and a sharp transition to a fluctuating regime with a wider spectrum. We demonstrate that the number of modes has an impact on the condensate’s lifetime. The smaller the number of modes, the more resistant is the condensate to perturbations. Experimental results show a good agreement with numerical simulations.
Resumo:
We review recent progress in optical wave turbulence with a specific focus on the fast growing field of fibre lasers. Weak irregular nonlinear interactions between a large number of resonator modes are responsible for practically important characteristics of fibre lasers such as spectral broadening of radiation. Wave turbulence is a fundamental nonlinear phenomenon which occurs in a variety of nonlinear wave-bearing physical systems. The experimental impediments and the computationally intensive nature of simulating of hydrodynamic or plasma wave turbulence often make it rather challenging to collect a significant number of statistical data The study of turbulent wave behaviour in optical devices offers quite a unique opportunity to collect an enormous amount of data on statistical properties of wave turbulence using high-speed, high precision optical measurements during a relatively short period of time. We present recent theoretical, numerical and experimental results on optical wave turbulence in fibre lasers ranging from weak to strong developed turbulence for different signs of fibre dispersion. Furthermore, we report on our studies of spectral wave condensate in fibre lasers that make interdisciplinary links with a number of other research fields.
Resumo:
Kozlov & Maz'ya (1989, Algebra Anal., 1, 144–170) proposed an alternating iterative method for solving Cauchy problems for general strongly elliptic and formally self-adjoint systems. However, in many applied problems, operators appear that do not satisfy these requirements, e.g. Helmholtz-type operators. Therefore, in this study, an alternating procedure for solving Cauchy problems for self-adjoint non-coercive elliptic operators of second order is presented. A convergence proof of this procedure is given.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
We review recent progress in optical wave turbulence with a specific focus on the fast growing field of fibre lasers. Weak irregular nonlinear interactions between a large number of resonator modes are responsible for practically important characteristics of fibre lasers such as spectral broadening of radiation. Wave turbulence is a fundamental nonlinear phenomenon which occurs in a variety of nonlinear wave-bearing physical systems. The experimental impediments and the computationally intensive nature of simulating of hydrodynamic or plasma wave turbulence often make it rather challenging to collect a significant number of statistical data The study of turbulent wave behaviour in optical devices offers quite a unique opportunity to collect an enormous amount of data on statistical properties of wave turbulence using high-speed, high precision optical measurements during a relatively short period of time. We present recent theoretical, numerical and experimental results on optical wave turbulence in fibre lasers ranging from weak to strong developed turbulence for different signs of fibre dispersion. Furthermore, we report on our studies of spectral wave condensate in fibre lasers that make interdisciplinary links with a number of other research fields.
Resumo:
C–C bond-forming, cross-coupling reactions of organohalides with nucleophilic compounds, catalysed by palladium, are amongst the most important chemical reactions available to the synthetic chemist. The intimate mechanisms of these reactions, involving Pd0/PdII redox steps, have been of great historical interest and continue to be so. The myriad of possible mechanisms is reviewed in this chapter. The interplay of mononuclear Pd species with higher order Pd species, e.g. nanoclusters/nanoparticles are considered as being equally important in cross-coupling reaction mechanisms. A focus is placed on trichotomic behaviour of cross-coupling catalytic manifolds, from homogeneous to hybrid homogeneous–heterogeneous to truly heterogeneous behaviour. For the latter, surface chemistry and metal atom leaching (and various experimental techniques) are broadly discussed. It is now clear that mechanism for general cross‐coupling reactions, that is as presented to undergraduate students studying Chemistry degrees across the world, is undoubtedly more complex than first thought. New opportunities for catalyst design have therefore emerged in the area of Pd nanoparticles and nanocatalysis, with some wonderful applications especially in chemical biology, providing a snapshot of what the future might hold.
Resumo:
Background: A natural glycoprotein usually exists as a spectrum of glycosylated forms, where each protein molecule may be associated with an array of oligosaccharide structures. The overall range of glycoforms can have a variety of different biophysical and biochemical properties, although details of structure–function relationships are poorly understood, because of the microheterogeneity of biological samples. Hence, there is clearly a need for synthetic methods that give access to natural and unnatural homogeneously glycosylated proteins. The synthesis of novel glycoproteins through the selective reaction of glycosyl iodoacetamides with the thiol groups of cysteine residues, placed by site-directed mutagenesis at desired glycosylation sites has been developed. This provides a general method for the synthesis of homogeneously glycosylated proteins that carry saccharide side chains at natural or unnatural glycosylation sites. Here, we have shown that the approach can be applied to the glycoprotein hormone erythropoietin, an important therapeutic glycoprotein with three sites of N-glycosylation that are essential for in vivo biological activity. Results: Wild-type recombinant erythropoietin and three mutants in which glycosylation site asparagine residues had been changed to cysteines (His10-WThEPO, His10-Asn24Cys, His10-Asn38Cys, His10-Asn83CyshEPO) were overexpressed and purified in yields of 13 mg l−1 from Escherichia coli. Chemical glycosylation with glycosyl-β-N-iodoacetamides could be monitored by electrospray MS. Both in the wild-type and in the mutant proteins, the potential side reaction of the other four cysteine residues (all involved in disulfide bonds) were not observed. Yield of glycosylation was generally about 50% and purification of glycosylated protein from non-glycosylated protein was readily carried out using lectin affinity chromatography. Dynamic light scattering analysis of the purified glycoproteins suggested that the glycoforms produced were monomeric and folded identically to the wild-type protein. Conclusions: Erythropoietin expressed in E. coli bearing specific Asn→Cys mutations at natural glycosylation sites can be glycosylated using β-N-glycosyl iodoacetamides even in the presence of two disulfide bonds. The findings provide the basis for further elaboration of the glycan structures and development of this general methodology for the synthesis of semi-synthetic glycoproteins. Results: Wild-type recombinant erythropoietin and three mutants in which glycosylation site asparagine residues had been changed to cysteines (His10-WThEPO, His10-Asn24Cys, His10-Asn38Cys, His10-Asn83CyshEPO) were overexpressed and purified in yields of 13 mg l−1 from Escherichia coli. Chemical glycosylation with glycosyl-β-N-iodoacetamides could be monitored by electrospray MS. Both in the wild-type and in the mutant proteins, the potential side reaction of the other four cysteine residues (all involved in disulfide bonds) were not observed. Yield of glycosylation was generally about 50% and purification of glycosylated protein from non-glycosylated protein was readily carried out using lectin affinity chromatography. Dynamic light scattering analysis of the purified glycoproteins suggested that the glycoforms produced were monomeric and folded identically to the wild-type protein. Conclusions: Erythropoietin expressed in E. coli bearing specific Asn→Cys mutations at natural glycosylation sites can be glycosylated using β-N-glycosyl iodoacetamides even in the presence of two disulfide bonds. The findings provide the basis for further elaboration of the glycan structures and development of this general methodology for the synthesis of semi-synthetic glycoproteins
Resumo:
This paper presents MRI measurements of a novel semi solid MR contrast agent to pressure. The agent is comprised of potassium chloride cross linked carageenan gum at a concentration of 2% w/v, with micron size lipid coated bubbles of air at a concentration of 3% v/v. The choice for an optimum suspending medium, the methods of production and the preliminary MRI results are presented herein. The carageenan gum is shown to be ideally elastic for compressions relating to volume changes less than 15%, in contrast to the inelastic gellan gum also tested. Although slightly lower than that of gellan gum, carageenan has a water diffusion coefficient of 1.72×10-9 m2.s-1 indicating its suitability to this purpose. RARE imaging is performed whilst simultaneously compressing test and control samples and a maximum sensitivity of 1.6% MR signal change per % volume change is found which is shown to be independent of proton density variations due to the presence of microbubbles and compression. This contrast agent could prove useful for numerous applications, and particularly in chemical engineering. More generally the method allows the user to non-invasively image with MRI any process that causes, within the solid, local changes either in bubble size or bubble shape. © 2008 American Institute of Physics.
Resumo:
Fiber lasers operating via Raman gain or based on rare-earth-doped active fibers are widely used as sources of CW radiation. However, these lasers are only quasi-CW: their intensity fluctuates strongly on short time scales. Here the framework of the complex Ginzburg-Landau equations, which are well known as an efficient model of mode-locked fiber lasers, is applied for the description of quasi-CW fiber lasers. The vector Ginzburg-Landau model of a Raman fiber laser describes the experimentally observed turbulent-like intensity dynamics, as well as polarization rogue waves. Our results open debates about the common underlying physics of operation of very different laser types - quasi-CW lasers and passively mode-locked lasers. Fiber lasers operating via Raman gain or based on rare-earth-doped active fibers are widely used as sources of CW radiation. However, these lasers are only quasi-CW: their intensity fluctuates strongly on short time scales. Here the framework of the complex Ginzburg-Landau equations, which are well known as an efficient model of mode-locked fiber lasers, is applied for the description of quasi-CW fiber lasers. The vector Ginzburg-Landau model of a Raman fiber laser describes the experimentally observed turbulent-like intensity dynamics, as well as polarization rogue waves. Our results open debates about the common underlying physics of operation of very different laser types - quasi-CW lasers and passively mode-locked lasers.