4 resultados para GaAs (311)B

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

An optical autocorrelator grown on a (211)B GaAs substrate that uses visible surface-emitted second-harmonic generation is demonstrated. The (211)B orientation needs TE mode excitation only, thus eliminating the problem of the beating between the TE and TM modes that is required for (100)-grown devices; it also has the advantage of giving higher upconversion efficiency than (111) growth. Values of waveguide loss and the difference in the effective refractive index between the TE(0) and TE(1) modes were also obtained from the autocorrelation experiment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An optical autocorrelator grown on a (211)B GaAs substrate that uses visible surface-emitted second-harmonic generation is demonstrated. The (211)B orientation needs TE mode excitation only, thus eliminating the problem of the beating between the TE and TM modes that is required for (100)-grown devices; it also has the advantage of giving higher upconversion efficiency than (111) growth. Values of waveguide loss and the difference in the effective refractive index between the TE(0) and TE(1) modes were also obtained from the autocorrelation experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fe3O4 GaAs hybrid structures have been studied using reflection high-energy electron diffraction (RHEED), x-ray photoelectron spectroscopy (XPS), x-ray magnetic circular dichroism (XMCD), and low-temperature vibrating-sample magnetometry (VSM). The samples were prepared by oxidizing epitaxial Fe thin films in a partial pressure of 5× 10-5 mbar of oxygen at 500 K for 180 s. Clear RHEED patterns were observed, suggesting the epitaxial growth of Fe oxides with a cubic structure. The XPS spectra show that the oxides were Fe3O4 rather than γ- Fe2O3, as there were no shake-up satellites between the two Fe 2p peaks. This was further confirmed by the XMCD measurements, which show ferromagnetic coupling between the Fe cations, with no evidence of intermixing at the interface. The VSM measurements show that the films have a magnetic uniaxial anisotropy and a "quick" saturation property, with the easy axes along the [011] direction. This detailed study offers further insight into the structure, interface, and magnetic properties of this hybrid Fe3O4 GaAs (100) structure as a promising system for spintronic application. © 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth and magnetic properties of epitaxial magnetite Fe3O4 on GaAs(100) have been studied by reflection high-energy electron diffraction, x-ray photoelectron spectroscopy, magneto-optical Kerr effect, and x-ray magnetic circular dichroism. The epitaxial Fe3O4 films were synthesized by in situ post growth annealing of ultrathin epitaxial Fe films at 500K in an oxygen partial pressure of 5×10−5mbar. The XMCD measurements show characteristic contributions from different sites of the ferrimagnetic magnetite unit cell, namely, Fetd3+, Feoh2+, and Feoh3+. The epitaxial relationship was found to be Fe3O4(100)⟨011⟩∕∕GaAs(100)⟨010⟩ with the unit cell of Fe3O4 rotated by 45° to match that of GaAs(100) substrate. The films show a uniaxial magnetic anisotropy in a thickness range of about 2.0–6.0nm with the easy axes along the [011] direction of the GaAs(100) substrate.