9 resultados para Evolutionary game design
em Aston University Research Archive
Resumo:
Market mechanisms are a means by which resources in contention can be allocated between contending parties, both in human economies and those populated by software agents. Designing such mechanisms has traditionally been carried out by hand, and more recently by automation. Assessing these mechanisms typically involves them being evaluated with respect to multiple conflicting objectives, which can often be nonlinear, noisy, and expensive to compute. For typical performance objectives, it is known that designed mechanisms often fall short on being optimal across all objectives simultaneously. However, in all previous automated approaches, either only a single objective is considered, or else the multiple performance objectives are combined into a single objective. In this paper we do not aggregate objectives, instead considering a direct, novel application of multi-objective evolutionary algorithms (MOEAs) to the problem of automated mechanism design. This allows the automatic discovery of trade-offs that such objectives impose on mechanisms. We pose the problem of mechanism design, specifically for the class of linear redistribution mechanisms, as a naturally existing multi-objective optimisation problem. We apply a modified version of NSGA-II in order to design mechanisms within this class, given economically relevant objectives such as welfare and fairness. This application of NSGA-II exposes tradeoffs between objectives, revealing relationships between them that were otherwise unknown for this mechanism class. The understanding of the trade-off gained from the application of MOEAs can thus help practitioners with an insightful application of discovered mechanisms in their respective real/artificial markets.
Resumo:
This paper consolidates evidence and material from a range of specialist and disciplinary fields to provide an evidence-based review and synthesis on the design and use of serious games in higher education. Search terms identified 165 papers reporting conceptual and empirical evidence on how learning attributes and game mechanics may be planned, designed and implemented by university teachers interested in using games, which are integrated into lesson plans and orchestrated as part of a learning sequence at any scale. The findings outline the potential of classifying the links between learning attributes and game mechanics as a means to scaffold teachers’ understanding of how to perpetuate learning in optimal ways while enhancing the in-game learning experience. The findings of this paper provide a foundation for describing methods, frames and discourse around experiences of design and use of serious games, linked to methodological limitations and recommendations for further research in this area.
Resumo:
The scaling problems which afflict attempts to optimise neural networks (NNs) with genetic algorithms (GAs) are disclosed. A novel GA-NN hybrid is introduced, based on the bumptree, a little-used connectionist model. As well as being computationally efficient, the bumptree is shown to be more amenable to genetic coding lthan other NN models. A hierarchical genetic coding scheme is developed for the bumptree and shown to have low redundancy, as well as being complete and closed with respect to the search space. When applied to optimising bumptree architectures for classification problems the GA discovers bumptrees which significantly out-perform those constructed using a standard algorithm. The fields of artificial life, control and robotics are identified as likely application areas for the evolutionary optimisation of NNs. An artificial life case-study is presented and discussed. Experiments are reported which show that the GA-bumptree is able to learn simulated pole balancing and car parking tasks using only limited environmental feedback. A simple modification of the fitness function allows the GA-bumptree to learn mappings which are multi-modal, such as robot arm inverse kinematics. The dynamics of the 'geographic speciation' selection model used by the GA-bumptree are investigated empirically and the convergence profile is introduced as an analytical tool. The relationships between the rate of genetic convergence and the phenomena of speciation, genetic drift and punctuated equilibrium arc discussed. The importance of genetic linkage to GA design is discussed and two new recombination operators arc introduced. The first, linkage mapped crossover (LMX) is shown to be a generalisation of existing crossover operators. LMX provides a new framework for incorporating prior knowledge into GAs.Its adaptive form, ALMX, is shown to be able to infer linkage relationships automatically during genetic search.
Resumo:
In this paper the effects of introducing novelty search in evolutionary art are explored. Our algorithm combines fitness and novelty metrics to frame image evolution as a multi-objective optimisation problem, promoting the creation of images that are both suitable and diverse. The method is illustrated by using two evolutionary art engines for the evolution of figurative objects and context free design grammars. The results demonstrate the ability of the algorithm to obtain a larger set of fit images compared to traditional fitness-based evolution, regardless of the engine used.
Resumo:
Purpose: Development and evaluation of a prototype dialogue game for servitization is reported. Design/methodology/approach: This paper reports the design of the iServe game, from user centered design, through implementation using the Unity games engine to evaluation, a process which took 270 researcher hours. Findings: No relationship was found between either age or gaming experience and usability. Participants who identified themselves as non-experts in servitization recognized the potential of the game to teach servitization concepts to other novice learners. Originality/value: The potential of business games for education and executive development has been recognized but factors, including high development cost, inhibit their uptake. Games engines offer a potential solution.
Resumo:
The use of simulation games as a pedagogic method is well established though its effective use is context-driven. This study adds to the increasing growing body of empirical evidence of the effectiveness of simulation games but more importantly emphasises why by explaining the instructional design implemented reflecting best practices. This multi-method study finds evidence that student learning was enhanced through the use of simulation games, reflected in the two key themes; simulation games as a catalyst for learning and simulation games as a vehicle for learning. In so doing the research provides one of the few empirically based studies that support simulation games in enhancing learning and, more importantly, contextualizes the enhancement in terms of the instructional design of the curriculum. This research should prove valuable for those with an academic interest in the use of simulation games and management educators who use, or are considering its use. Further, the findings contribute to the academic debate concerning the effective implementation of simulation game-based training in business and management education.
Resumo:
Purpose: This paper presents the system architecture of a serious game, which is going to be run in parallel to Rolls Royce tra ining on product-service systems (PSS). Design/methodology/approach: The original game is outlined, requirements for an onl ine version are defined, and the architecture is proposed. Findings: The games approach has proven its value in design for service tra ining but an online version is needed to improve the opportunit ies to deliver the game. Originality/value: Such a system presents opportunities for the acquisition and development of specific professional knowledge, skills, and competencies
Resumo:
Real world search problems, characterised by nonlinearity, noise and multidimensionality, are often best solved by hybrid algorithms. Techniques embodying different necessary features are triggered at specific iterations, in response to the current state of the problem space. In the existing literature, this alternation is managed either statically (through pre-programmed policies) or dynamically, at the cost of high coupling with algorithm inner representation. We extract two design patterns for hybrid metaheuristic search algorithms, the All-Seeing Eye and the Commentator patterns, which we argue should be replaced by the more flexible and loosely coupled Simple Black Box (Two-B) and Utility-based Black Box (Three-B) patterns that we propose here. We recommend the Two-B pattern for purely fitness based hybridisations and the Three-B pattern for more generic search quality evaluation based hybridisations.
Resumo:
Based on an unprecedented need of stimulating creative capacities towards entrepreneurship to university students and young researchers, this paper introduces and analyses a smart learning ecosystem for encouraging teaching and learning on creative thinking as a distinct feature to be taught and learnt in universities. The paper introduces a mashed-up authoring architecture for designing lesson-plans and games with visual learning mechanics for creativity learning. The design process is facilitated by creativity pathways discerned across components. Participatory learning, networking and capacity building is a key aspect of the architecture, extending the learning experience and context from the classroom to outdoor (co-authoring of creative pathways by students, teachers and real-world entrepreneurs) and personal spaces. We anticipate that the smart learning ecosystem will be empirically evaluated and validated in future iterations for exploring the benefits of using games for enhancing creative mindsets, unlocking the imagination that lies within, practiced and transferred to multiple academic tribes and territories.