22 resultados para Electronic digital computers--Power supply
em Aston University Research Archive
Resumo:
For many decades, the Kingdom of Saudi Arabia has been widely known for being a reliable oil exporter. This fact, however, has not exempted it from facing significant domestic energy challenges. One of the most pressing of these challenges involves bridging the widening electricity supply-demand gap where, currently, the demand is growing at a very fast rate. One crucial means to address this challenge is through delivering power supply projects with maximum efficiency. Project delivery delay, however, is not uncommon in this highly capital-intensive industry, indicating electricity supplies are not coping with the demand increases. To provide a deeper insight into the challenges of project implementation and efficient practice, this research adopts a pragmatic approach by triangulating literature, questionnaires and semi-structured interviews. The research was conducted in the Saudi Arabian power supply industry – Western Operating Area. A total of 105 usable questionnaires were collected, and 28 recorded, semi-structured interviews were conducted, analysed and synthesised to produce a conceptual model of what constitutes the project implementation challenges in the investigated industry. This was achieved by conducting a comprehensive ranking analysis applied to all 58 identified and surveyed factors which, according to project practitioners in the investigated industry, contribute to project delay. 28 of these project delay factors were selected as the "most important" ones. Factor Analysis was employed to structure these 28 most important project delay factors into the following meaningful set of 7 project implementation challenges: Saudi Electricity Company's contractual commitments, Saudi Electricity Company's communication and coordination effectiveness, contractors' project planning and project control effectiveness, consultant-related aspects, manpower challenges and material uncertainties, Saudi Electricity Company's tendering system, and lack of project requirements clarity. The study has implications for industry policy in that it provides a coherent assessment of the key project stakeholders' central problems. From this analysis, pragmatic recommendations are proposed that, if enacted, will minimise the significance of the identified problems on future project outcomes, thus helping to ensure the electricity supply-demand gap is diminished.
Resumo:
This thesis discusses the need for nondestructive testing and highlights some of the limitations in present day techniques. Special interest has been given to ultrasonic examination techniques and the problems encountered when they are applied to thick welded plates. Some suggestions are given using signal processing methods. Chapter 2 treats the need for nondestructive testing as seen in the light of economy and safety. A short review of present day techniques in nondestructive testing is also given. The special problems using ultrasonic techniques for welded structures is discussed in Chapter 3 with some examples of elastic wave propagation in welded steel. The limitations in applying sophisticated signal processing techniques to ultrasonic NDT~ mainly found in the transducers generating or receiving the ultrasound. Chapter 4 deals with the different transducers used. One of the difficulties with ultrasonic testing is the interpretation of the signals encountered. Similar problems might be found with SONAR/RADAR techniques and Chapter 5 draws some analogies between SONAR/RADAR and ultrasonic nondestructive testing. This chapter also includes a discussion on some on the techniques used in signal processing in general. A special signal processing technique found useful is cross-correlation detection and this technique is treated in Chapter 6. Electronic digital compute.rs have made signal processing techniques easier to implement -Chapter 7 discusses the use of digital computers in ultrasonic NDT. Experimental equipment used to test cross-correlation detection of ultrasonic signals is described in Chapter 8. Chapter 9 summarises the conclusions drawn during this investigation.
Resumo:
A single-stage, three-phase AC-to-DC converter topology is proposed for high-frequency power supply applications. The principal features of the circuit include continuous current operation of the three AC input inductors, inherent shaping of the input currents, resulting in high power factor, a transformer isolated output, and only two active devices are required, both soft-switched. Resonant conversion techniques are used, and a high power factor is achieved by injecting high-frequency currents into the three-phase rectifier, producing a high frequency modulation of the rectifier input voltages. The current injection principle is explained and the system operation is confirmed by a combination of simulation and experimental results.
Resumo:
Ad hoc wireless sensor networks (WSNs) are formed from self-organising configurations of distributed, energy constrained, autonomous sensor nodes. The service lifetime of such sensor nodes depends on the power supply and the energy consumption, which is typically dominated by the communication subsystem. One of the key challenges in unlocking the potential of such data gathering sensor networks is conserving energy so as to maximize their post deployment active lifetime. This thesis described the research carried on the continual development of the novel energy efficient Optimised grids algorithm that increases the WSNs lifetime and improves on the QoS parameters yielding higher throughput, lower latency and jitter for next generation of WSNs. Based on the range and traffic relationship the novel Optimised grids algorithm provides a robust traffic dependent energy efficient grid size that minimises the cluster head energy consumption in each grid and balances the energy use throughout the network. Efficient spatial reusability allows the novel Optimised grids algorithm improves on network QoS parameters. The most important advantage of this model is that it can be applied to all one and two dimensional traffic scenarios where the traffic load may fluctuate due to sensor activities. During traffic fluctuations the novel Optimised grids algorithm can be used to re-optimise the wireless sensor network to bring further benefits in energy reduction and improvement in QoS parameters. As the idle energy becomes dominant at lower traffic loads, the new Sleep Optimised grids model incorporates the sleep energy and idle energy duty cycles that can be implemented to achieve further network lifetime gains in all wireless sensor network models. Another key advantage of the novel Optimised grids algorithm is that it can be implemented with existing energy saving protocols like GAF, LEACH, SMAC and TMAC to further enhance the network lifetimes and improve on QoS parameters. The novel Optimised grids algorithm does not interfere with these protocols, but creates an overlay to optimise the grids sizes and hence transmission range of wireless sensor nodes.
Resumo:
With the increasing use of digital computers for data acquisition and digital process control, frequency domain transducers have become very attractive due to their virtual digital output. Essentially they are electrically maintained oscillators where the sensor is the controlling resonator.They are designed to make the frequency a function of the physical parameter being measured. Because of their high quality factor, mechanical resonators give very good frequency stability and are widely used as sensors. For this work symmetrical mechanical resonators such as the tuning fork were considered, to be the most promising. These are dynamically clamped and can be designed to have extensive regions where no vibrations occur.This enables the resonators to be robustly mounted in a way convenient for various applications. Designs for the measurement of fluid density and tension have been produced. The principle of the design of the resonator for fluid density measurement is a thin gap (trapping a lamina of fluid) between its two members which vibrate in antiphase.An analysis of the inter action between this resonator and the fluid lamina has carried out.In gases narrow gaps are needed for a good sensitivity and the use of the material fused quartz, because of its low density and very low temperature coefficient, is ideally suitable. In liquids an adequate sensitivity is achieved even with a wide lamina gap. Practical designs of such transducers have been evolved. The accuracy for liquid measurements is better than 1%. For gases it was found that, in air, a change of atmospheric pressure of 0.3% could be detected. In constructing a tension transducer using such a mechanical sensor as a wire or a beam, major difficulties are encountered in making an efficient clamping arrangement for the sensor. The use of dynamically clamped beams has been found to overcome the problem and this is the basis of the transducer investigated.
Resumo:
The present dissertation is concerned with the determination of the magnetic field distribution in ma[.rnetic electron lenses by means of the finite element method. In the differential form of this method a Poisson type equation is solved by numerical methods over a finite boundary. Previous methods of adapting this procedure to the requirements of digital computers have restricted its use to computers of extremely large core size. It is shown that by reformulating the boundary conditions, a considerable reduction in core store can be achieved for a given accuracy of field distribution. The magnetic field distribution of a lens may also be calculated by the integral form of the finite element rnethod. This eliminates boundary problems mentioned but introduces other difficulties. After a careful analysis of both methods it has proved possible to combine the advantages of both in a .new approach to the problem which may be called the 'differential-integral' finite element method. The application of this method to the determination of the magnetic field distribution of some new types of magnetic lenses is described. In the course of the work considerable re-programming of standard programs was necessary in order to reduce the core store requirements to a minimum.
Resumo:
This work has concentrated on the testing of induction machines to determine their temperature rise at full-load without mechanically coupling to a load machine. The achievements of this work are outlined as follows. 1. Four distinct categories of mixed-frequency test using an inverter have been identified by the author. The simulation results of these tests as well as the conventional 2-supply test have been analysed in detail. 2. Experimental work on mixed-frequency tests has been done on a small (4 kW) squirrel cage induction machine using a voltage source PWM inverter. Two out of the four categories of test suggested have been tested and the temperature rise results were found to be similar to the results of a direct loading test. Further, one of the categories of test proposed has been performed on a 3.3 kW slip-ring induction machine for the conformation of the rotor values. 3. A low current supply mixed-frequency test-rig has been proposed. For this purpose, a resonant bank was connected to the DC link of the inverter in order to maintain the exchange of power between the test machine and the resonant bank instead of between the main supply and the test machine. The resonant bank was then replaced with a special electro-mechanical energy storage unit. The current of the main power supply was then reduced in amplitude. 4. A variable inertia test for full load temperature rise testing of induction machines has been introduced. This test is purely mechanical in nature and does not require any electrical connection of the test machine to any other machine. It has the advantage of drawing very little net power from the supply.
Resumo:
For remote, semi-arid areas, brackish groundwater (BW) desalination powered by solar energy may serve as the most technically and economically viable means to alleviate the water stresses. For such systems, high recovery ratio is desired because of the technical and economical difficulties of concentrate management. It has been demonstrated that the current, conventional solar reverse osmosis (RO) desalination can be improved by 40–200 times by eliminating unnecessary energy losses. In this work, a batch-RO system that can be powered by a thermal Rankine cycle has been developed. By directly recycling high pressure concentrates and by using a linkage connection to provide increasing feed pressures, the batch-RO has been shown to achieve a 70% saving in energy consumption compared to a continuous single-stage RO system. Theoretical investigations on the mass transfer phenomena, including dispersion and concentration polarization, have been carried out to complement and to guide experimental efforts. The performance evaluation of the batch-RO system, named DesaLink, has been based on extensive experimental tests performed upon it. Operating DesaLink using compressed air as power supply under laboratory conditions, a freshwater production of approximately 300 litres per day was recorded with a concentration of around 350 ppm, whilst the feed water had a concentration range of 2500–4500 ppm; the corresponding linkage efficiency was around 40%. In the computational aspect, simulation models have been developed and validated for each of the subsystems of DesaLink, upon which an integrated model has been realised for the whole system. The models, both the subsystem ones and the integrated one, have been demonstrated to predict accurately the system performance under specific operational conditions. A simulation case study has been performed using the developed model. Simulation results indicate that the system can be expected to achieve a water production of 200 m3 per year by using a widely available evacuated tube solar collector having an area of only 2 m2. This freshwater production would satisfy the drinking water needs of 163 habitants in the Rajasthan region, the area for which the case study was performed.
Resumo:
This paper proposes an in situ diagnostic and prognostic (D&P) technology to monitor the health condition of insulated gate bipolar transistors (IGBTs) used in EVs with a focus on the IGBTs' solder layer fatigue. IGBTs' thermal impedance and the junction temperature can be used as health indicators for through-life condition monitoring (CM) where the terminal characteristics are measured and the devices' internal temperature-sensitive parameters are employed as temperature sensors to estimate the junction temperature. An auxiliary power supply unit, which can be converted from the battery's 12-V dc supply, provides power to the in situ test circuits and CM data can be stored in the on-board data-logger for further offline analysis. The proposed method is experimentally validated on the developed test circuitry and also compared with finite-element thermoelectrical simulation. The test results from thermal cycling are also compared with acoustic microscope and thermal images. The developed circuitry is proved to be effective to detect solder fatigue while each IGBT in the converter can be examined sequentially during red-light stopping or services. The D&P circuitry can utilize existing on-board hardware and be embedded in the IGBT's gate drive unit.
Resumo:
The application of any e-Solution promises significant returns. In particular, using internet technologies both within enterprises and across the supply (value) chain provides real opportunity, not only for operational improvement but also for innovative strategic positioning. However, significant questions obscure potential investment; how any value will actually be created and, importantly, how this value will be shared across the value chain is not clear. This paper will describe a programme of research that is developing an enterprise simulator that will provide a more fundamental understanding of the impact of e-Solutions across operational supply chains, in terms of both standard operational and financial measures of performance. An efficient supply chain reduces total costs of operations by sharing accurate real-time information and coordinating inter-organizational business processes. This form of electronic link between organizations is known as business-to-business (B2B) e-Business. The financial measures go beyond simple cost calculations to real bottom-line performance by modelling the financial transactions that business processes generate. The paper will show how this enterprise simulator allows for a complete supply chain to be modelled in this way across four key applications: control system design, virtual enterprises, pan-supply-chain performance metrics and supporting e-Supply-chain design methodology.
Resumo:
We report the impact of longitudinal signal power profile on the transmission performance of coherently-detected 112 Gb/s m-ary polarization multiplexed quadrature amplitude modulation system after compensation of deterministic nonlinear fibre impairments. Performance improvements up to 0.6 dB (Q(eff)) are reported for a non-uniform transmission link power profile. Further investigation reveals that the evolution of the transmission performance with power profile management is fully consistent with the parametric amplification of the amplified spontaneous emission by the signal through four-wave mixing. In particular, for a non-dispersion managed system, a single-step increment of 4 dB in the amplifier gain, with respect to a uniform gain profile, at similar to 2/3(rd) of the total reach considerably improves the transmission performance for all the formats studied. In contrary a negative-step profile, emulating a failure (gain decrease or loss increase), significantly degrades the bit-error rate.
Resumo:
Digital back-propagation (DBP) has recently been proposed for the comprehensive compensation of channel nonlinearities in optical communication systems. While DBP is attractive for its flexibility and performance, it poses significant challenges in terms of computational complexity. Alternatively, phase conjugation or spectral inversion has previously been employed to mitigate nonlinear fibre impairments. Though spectral inversion is relatively straightforward to implement in optical or electrical domain, it requires precise positioning and symmetrised link power profile in order to avail the full benefit. In this paper, we directly compare ideal and low-precision single-channel DBP with single-channel spectral-inversion both with and without symmetry correction via dispersive chirping. We demonstrate that for all the dispersion maps studied, spectral inversion approaches the performance of ideal DBP with 40 steps per span and exceeds the performance of electronic dispersion compensation by ~3.5 dB in Q-factor, enabling up to 96% reduction in complexity in terms of required DBP stages, relative to low precision one step per span based DBP. For maps where quasi-phase matching is a significant issue, spectral inversion significantly outperforms ideal DBP by ~3 dB.
Resumo:
In supply chain management literature, there has been little empirical research investigation on purchasing consortium issues focusing on a detailed analysis of information and communication (ICT) based procurement strategies. Based on the exploration of academic literature and two surveys among purchasing organisations as well as e-Marketplaces / procurement service providers (PSPs) in the automotive and electronics industry sectors, the research methodology follows a positivistic approach in order to assess the overall statement: ‘Effective participation in electronic purchasing consortia (EPC) can have the potential to enhance competitive advantage. Implementation therefore requires a clear and detailed understanding of the major process structures and drivers, based upon thetechnology-organisation-environment framework.’ Key factors and structures that affect the adoption and diffusion of EPC and the performance impact of adoption are investigated. The empirically derived model for EPC can be a valuable starting point to EPC research.
Resumo:
A proposal to increase the existing residential LV grid voltage from 230 V to 300 V has been made in order to increase existing network capacity. A power-electronic AC-AC converter is then used to provide 230 V at each property. The equipment can also provide power-quality improvements to the network and load. Several constraints such as temperature rise at the converter location lead to a converter design requiring very high efficiency. In this paper different AC/AC converter topologies are presented which compares the power quality benefits, size and efficiency of each converter. The design and the control technique of the most suitable topology are verified using simulation and preliminary experimentally results of prototype hardware are also included. © 2013 IEEE.