49 resultados para CO OXIDATION ACTIVITY
em Aston University Research Archive
Resumo:
Reactive surface of mesoporous nanocrystalline silicon was used to synthesise noble metal nanoparticles via in situ reduction of the precursor salt solutions. The synthetic methodology for metal nanoparticle formation was systematically developed, and reaction conditions of metal salts reduction were optimised to prepare nanoparticles of controlled size distribution in the order 5–10 nm inside the mesoporous silicon template. CO oxidation was used as a test reaction for the synthesised Pt/porous silicon catalysts. Sharp reaction light-off was observed at about 120 °C on the optimised catalysts. The catalysts were shown to be stable in the extended steady-state runs and in the catalysts re-use experiments. Metal nanoparticles were shown to be stable to sintering at elevated temperatures up to 1000 °C. However, after thermal treatment on air, Pt nanoparticles were covered by a SiOx layer and were less active in CO oxidation.
Resumo:
Control of spatiotemporal chaos is achieved in the catalytic oxidation of CO on Pt(110) by localized modification of the kinetic properties of the surface chemical reaction. In the experiment, a small temperature heterogeneity is created on the surface by a focused laser beam. This heterogeneity constitutes a pacemaker and starts to emit target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos that is present in the absence of control. We compare this experimental result with a numerical study of the Krischer-Eiswirth-Ertl model for CO oxidation on Pt(110). We confirm the experimental findings and identify regimes where complete and partial controls are possible.
Resumo:
Chemical turbulence in the oscillatory catalytic CO oxidation on Pt(110) is suppressed by means of focused laser light. The laser locally heats the platinum surface which leads to a local increase of the oscillation frequency, and to the formation of a pacemaker which emits target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos present in the absence of laser light. Our experimental results are confirmed by a detailed numerical analysis of one- and two-dimensional media using the Krischer-Eiswirth-Ertl model for CO oxidation on Pt110. Different control regimes are identified and the dispersion relation of the system is determined using the pacemaker as an externally tunable wave source.
Resumo:
Aims: It is well established that the bile salt sodium taurocholate acts as a germinant for Clostridium difficile spores and the amino acid glycine acts as a co-germinant. The aim of this study was to determine whether any other amino acids act as co-germinants. Methods and Results: Clostridium difficile spore suspensions were exposed to different germinant solutions comprising taurocholate, glycine and an additional amino acid for 1 h before heating shocking (to kill germinating cells) or chilling on ice. Samples were then re-germinated and cultured to recover remaining viable cells. Only five amino acids out of the 19 common amino acids tested (valine, aspartic acid, arginine, histidine and serine) demonstrated co-germination activity with taurocholate and glycine. Of these, only histidine produced high levels of germination (97·9–99·9%) consistently in four strains of Cl. difficile spores. Some variation in the level of germination produced was observed between different PCR ribotypes, and the optimum concentration of amino acids with taurocholate for the germination of Cl. difficile NCTC 11204 spores was 10–100 mmol l-1. Conclusions: Histidine was found to be a co-germinant for Cl. difficile spores when combined with glycine and taurocholate. Significance and Impact of the Study: The findings of this study enhance current knowledge regarding agents required for germination of Cl. difficile spores which may be utilized in the development of novel applications to prevent the spread of Cl. difficile infection.
Resumo:
The selective aerobic oxidation of cinnamyl alcohol over Pt nanoparticles has been tuned via the use of mesoporous silica supports to control their dispersion and oxidation state. High area two-dimensional SBA-15, and three-dimensional, interconnected KIT-6 silica significantly enhance Pt dispersion, and thus surface PtO2 concentration, over that achievable via commercial low surface area silica. Selective oxidation activity scales with Pt dispersion in the order KIT-6 ≥ SBA-15 > SiO2, evidencing surface PtO2 as the active site for cinnamyl alcohol selox to cinnamaldehyde. Kinetic mapping has quantified key reaction pathways, and the importance of high O2 partial pressures for cinnamaldehyde production. © 2013 The Royal Society of Chemistry.
Resumo:
We studied the effects of the composition of impregnating solution and heat treatment conditions on the activity of catalytic systems for the low-temperature oxidation of CO obtained by the impregnation of Busofit carbon-fiber cloth with aqueous solutions of palladium, copper, and iron salts. The formation of an active phase in the synthesized catalysts at different stages of their preparation was examined with the use of differential thermal and thermogravimetric analyses, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and elemental spectral analysis. The catalytic system prepared by the impregnation of electrochemically treated Busofit with the solutions of PdCl, FeCl, CuBr, and Cu(NO ) and activated under optimum conditions ensured 100% CO conversion under a respiratory regime at both low (0.03%) and high (0.5%) carbon monoxide contents of air. It was found that the activation of a catalytic system at elevated temperatures (170-180°C) leads to the conversion of Pd(II) into Pd(I), which was predominantly localized in a near-surface layer. The promoting action of copper nitrate consists in the formation of a crystalline phase of the rhombic atacamite CuCl(OH). The catalyst surface is finally formed under the conditions of a catalytic reaction, when a joint Pd(I)-Cu(I) active site is formed. © 2014 Pleiades Publishing, Ltd.
Resumo:
Ultrathin alumina monolayers grafted onto an ordered mesoporous SBA-15 silica framework afford a composite catalyst support with unique structural properties and surface chemistry. Palladium nanoparticles deposited onto Al-SBA-15 via wet impregnation exhibit the high dispersion and surface oxidation characteristic of pure aluminas, in conjunction with the high active site densities characteristic of thermally stable, high-area mesoporous silicas. This combination confers significant rate enhancements in the aerobic selective oxidation (selox) of cinnamyl alcohol over Pd/Al-SBA-15 compared to mesoporous alumina or silica supports. Operando, liquid-phase XAS highlights the interplay between dissolved oxygen and the oxidation state of palladium nanoparticles dispersed over Al-SBA-15 towards on-stream reduction: ambient pressures of flowing oxygen are sufficient to hinder palladium oxide reduction to metal, enabling a high selox activity to be maintained, whereas rapid PdO reduction and concomitant catalyst deactivation occurs under static oxygen. Selectivity to the desired cinnamaldehyde product mirrors these trends in activity, with flowing oxygen minimising CO cleavage of the cinnamyl alcohol reactant to trans-β-methylstyrene, and of cinnamaldehyde decarbonylation to styrene. © 2013 Elsevier B.V.
Resumo:
The selective oxidation of crotyl alcohol to crotonaldehyde over ultrathin Au overlayers on Pd(1 1 1) and Au/Pd(1 1 1) surface alloys has been investigated by time-resolved X-ray photoelectron spectroscopy (XPS) and mass spectrometry. Pure gold is catalytically inert towards crotyl alcohol which undergoes reversible adsorption. In contrast, thermal processing of a 3.9 monolayer (ML) gold overlayer allows access to a range of AuPd surface alloy compositions, which are extremely selective towards crotonaldehyde production, and greatly reduce the extent of hydrocarbon decomposition and eventual carbon laydown compared with base Pd(1 1 1). XPS and CO titrations suggest that palladium-rich surface alloys offer the optimal balance between alcohol oxidative dehydrogenation activity while minimising competitive decomposition pathways, and that Pd monomers are not the active surface ensemble for such selox chemistry over AuPd alloys. Crown Copyright © 2008.
Resumo:
Catalytic systems containing palladium, copper, and iron compounds on carbon supports-kernel activated carbon and fibrous carbon materials (Karbopon and Busofit)-for the low-temperature oxidation of CO were synthesized. The effects of the nature of the support, the concentration and composition of the active component, and the conditions of preparation on the efficiency of the catalytic system were studied. The catalytic system based on Karbopon exhibited the highest activity: the conversion of carbon monoxide was 90% at room temperature and a reaction mixture (0.03% CO in air) space velocity of 10 000 h. It was found that the metals occurred in oxidized states in the course of operation: palladium mainly occurred as Pd, whereas copper and iron occurred as Cu and Fe, respectively. © 2008 MAIK Nauka.
Resumo:
Surfactant templating offers a simple route to synthesize high-surface area silicas with ordered, tunable mesopore architectures. The use of these materials as versatile catalyst supports for palladium nanoparticles has been explored in the aerobic selective oxidation (selox) of allylic alcohols under mild conditions. Families of Pd/mesoporous silicas, synthesized through incipient wetness impregnation of SBA-15, SBA-16, and KIT-6, have been characterized by using nitrogen porosimetry, CO chemisorption, diffuse reflection infrared Fourier transform spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and high-resolution TEM and benchmarked in liquid phase allylic alcohol selox against a Pd/amorphous SiO2 standard. The transition from amorphous to two-dimensional parallel and three-dimensional interpenetrating porous silica networks conferred significant selox rate enhancements associated with higher surface densities of active palladium oxide sites. Dissolved oxygen was essential for insitu stabilization of palladium oxide, and thus maintenance of high activity on-stream, whereas selectivity to the desired aldehyde selox product over competing hydrogenolysis pathways was directed by using palladium metal. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Highly ordered mesoporous alumina was prepared via evaporation induced self assembly and was impregnated to afford a family of Pd/meso-Al2O3 catalysts for the aerobic selective oxidation (selox) of allylic alcohols under mild reaction conditions. CO chemisorption and XPS identify the presence of highly dispersed (0.9–2 nm) nanoparticles comprising heavily oxidised PdO surfaces, evidencing a strong palladium-alumina interaction. Surface PdO is confirmed as the catalytically active phase responsible for allylic alcohol selox, with initial rates for Pd/meso-Al2O3 far exceeding those achievable for palladium over either amorphous alumina or mesoporous silica supports. Pd/meso-Al2O3 is exceptionally active for the atom efficient selox of diverse allylic alcohols, with activity inversely proportional to alcohol mass.
Resumo:
New heterogenized catalytic systems for the low-temperature oxidation of CO were synthesized by supporting solutions of Pd, Cu, and Fe salts on carbon fibrous materials (carbopon and busofit). The carbon supports were studied by elemental analysis, SEM, TGA, and TPD. The effects of the nature of the support, the concentration and composition of the active component, and the conditions of preparation on the efficiency of the catalytic system were studied. It was ascertained that attenuation of hydrophilic properties of the support led to the decrease in system activity. The investigation of the catalysts by XPS showed that sample treatment in the reaction medium results in redistribution of the components of the active phase in the near-surface layer of the catalyst. The catalytic system based on carbon fibrous material carbopon prepared by supporting active components (Pd, Cu, and Fe salts) in three stages with intermediate activation in the reaction medium ensures 95% conversion of CO under respiratory conditions, and is promising for the design of the main element of breathing masks on its basis.
Resumo:
Stone-fruit activated carbon (SAC) and modified versions containing acidic oxygen and basic nitrogen groups have been used to prepare palladium catalysts by wet impregnation. Carbon supports and catalysts are investigated by thermo-gravimetric analysis, TPD, oxygen chemisorption, TEM and XPS. The influence of the nature of the functional groups on the dispersion and oxidation state of palladium and its activity in hydrogen oxidation is investigated. Pd dispersion is found to increase with the basic strength of functional groups on the support. XPS reveals that introduction of amine groups in SAC results in an increased proportion of Pd0, resistant to re-oxidation. Palladium catalysts supported on activated carbon modified by diethylamine groups are found to exhibit the highest metal dispersion and greatest activity in hydrogen oxidation. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Pd does it alone : Tailored heterogeneous catalysts offer exciting, alternative, clean technologies for regioselective molecular transformations. A mesoporous alumina support stabilizes atomically dispersed PdII surface sites (see picture, C light gray, O red, Pd dark gray, Al purple, H white), thereby dramatically enhancing catalytic performance in the aerobic selective oxidation of alcohols.
Resumo:
Redox regulation of signalling pathways is critical in proliferation and apoptosis; redox imbalance can lead to pathologies such as inflammation and cancer. Vaccinia H1-related protein (VHR; DUSP3) is a dual-specificity phosphatase important in controlling MAP kinase activity during cell cycle. the active-site motif contains a cysteine that acts as a nucleophile during catalysis. We used VHR to investigate the effect of oxidation in vitro on phosphatase activity, with the aim of determining how the profile of site-specific modification related to catalytic activity. Recombinant human VHR was expressed in E. coli and purified using a GST-tag. Protein was subjected to oxidation with various concentrations of SIN-1 or tetranitromethane (TNM) as nitrating agents, or HOCl. the activity was assayed using either 3-O-methylfluorescein phosphate with fluorescence detection or PIP3 by phosphate release with malachite green. the sites of oxidation were mapped using HPLC coupled to tandem mass spectrometry on an ABSciex 5600TripleTOF following in-gel digestion. More than 25 different concentration-dependent oxidative modifications to the protein were detected, including oxidations of methionine, cysteine, histidine, lysine, proline and tyrosine, and the % oxidized peptide (versus unmodified peptide) was determined from the extracted ion chromatograms. Unsurprisingly, methionine residues were very susceptible to oxidation, but there was a significant different in the extent of their oxidation. Similarly, tyrosine residues varied greatly in their modifications: Y85 and Y138 were readily nitrated, whereas Y38, Y78 and Y101 showed little modification. Y138 must be phosphorylated for MAPK phosphatase activity, so this susceptibility impacts on signalling pathways. Di- and tri- oxidations of cysteine residues were observed, but did not correlate directly with loss of activity. Overall, the catalytic activity did not correlate with redox state of any individual residue, but the total oxidative load correlated with treatment concentration and activity. This study provides the first comprehensive analysis of oxidation modifications of VHR, and demonstrates both heterogenous oxidant effects and differential residue susceptibility in a signalling phosphatase.