9 resultados para Biology, Neuroscience|Psychology, Psychobiology
em Aston University Research Archive
Resumo:
A comprehensive and highly illustrated text providing a broad and invaluable overview of sensory systems at the molecular, cellular and neurophysiological level of vertebrates, invertebrates and prokaryotes. It retains a strong focus on human systems, and takes an evolutionary and comparative approach to review the mechanosenses, chemosenses, photosenses, and other sensory systems including those for detecting pain, temperature electric and magnetic fields etc. It incorporates exciting and significant new insights provided by molecular biology which demonstrate how similar the molecular architecture and physiology of sensory cells are across species and across sensory modality, often indicationg a common ancestry dating back over half a billion years. Written by a renowned author, with extensive teaching experience in the biology of sensory systems, this book includes: - Over 400 illustrations - Self–assessment questions - Full bibliography preceded by short bibliographical essays - Boxes containing useful supplementary material. It will be invaluable for undergraduates and postgraduates studying biology, zoology, animal physiology, neuroscience, anatomy, molecular biology, physiological psychology and related courses.
Resumo:
Signal integration determines cell fate on the cellular level, affects cognitive processes and affective responses on the behavioural level, and is likely to be involved in psychoneurobiological processes underlying mood disorders. Interactions between stimuli may subjected to time effects. Time-dependencies of interactions between stimuli typically lead to complex cell responses and complex responses on the behavioural level. We show that both three-factor models and time series models can be used to uncover such time-dependencies. However, we argue that for short longitudinal data the three factor modelling approach is more suitable. In order to illustrate both approaches, we re-analysed previously published short longitudinal data sets. We found that in human embryonic kidney 293 cells cells the interaction effect in the regulation of extracellular signal-regulated kinase (ERK) 1 signalling activation by insulin and epidermal growth factor is subjected to a time effect and dramatically decays at peak values of ERK activation. In contrast, we found that the interaction effect induced by hypoxia and tumour necrosis factor-alpha for the transcriptional activity of the human cyclo-oxygenase-2 promoter in HEK293 cells is time invariant at least in the first 12-h time window after stimulation. Furthermore, we applied the three-factor model to previously reported animal studies. In these studies, memory storage was found to be subjected to an interaction effect of the beta-adrenoceptor agonist clenbuterol and certain antagonists acting on the alpha-1-adrenoceptor / glucocorticoid-receptor system. Our model-based analysis suggests that only if the antagonist drug is administer in a critical time window, then the interaction effect is relevant.
Resumo:
Since publication of the first edition, huge developments have taken place in sensory biology research and new insights have been provided in particular by molecular biology. These show the similarities in the molecular architecture and in the physiology of sensory cells across species and across sensory modality and often indicate a common ancestry dating back over half a billion years. Biology of Sensory Systems has thus been completely revised and takes a molecular, evolutionary and comparative approach, providing an overview of sensory systems in vertebrates, invertebrates and prokaryotes, with a strong focus on human senses. Written by a renowned author with extensive teaching experience, the book covers, in six parts, the general features of sensory systems, the mechanosenses, the chemosenses, the senses which detect electromagnetic radiation, other sensory systems including pain, thermosensitivity and some of the minority senses and, finally, provides an outline and discussion of philosophical implications. New in this edition: - Greater emphasis on molecular biology and intracellular mechanisms - New chapter on genomics and sensory systems - Sections on TRP channels, synaptic transmission, evolution of nervous systems, arachnid mechanosensitive sensilla and photoreceptors, electroreception in the Monotremata, language and the FOXP2 gene, mirror neurons and the molecular biology of pain - Updated passages on human olfaction and gustation. Over four hundred illustrations, boxes containing supplementary material and self-assessment questions and a full bibliography at the end of each part make Biology of Sensory Systems essential reading for undergraduate students of biology, zoology, animal physiology, neuroscience, anatomy and physiological psychology. The book is also suitable for postgraduate students in more specialised courses such as vision sciences, optometry, neurophysiology, neuropathology, developmental biology.
Resumo:
Social cognitive neuroscience is an emerging branch of cognitive neuroscience that bridges together social psychology and neuroscience. At its core is an understanding of the relationship between the brain and social interaction. The social cognitive neuroscientist places empirical endeavor within a three–stage framework, and questions falling under the SCN rubric undergo interrogation at each of these three levels. Firstly, we seek to understand a neuroscience of social interactions at the social level. Here we need to understand the motivational and other social factors that drive our behavior and experience in the real world. It goes without saying that any study of the cognitive neuroscience of socially interactive behavior must first be informed by social psychological theory to maintain ecological validity. Second, the social cognitive neuroscientist must be an adroit cognitive psychologist and be able to examine interactive behavior from the cognitive level. It is here that information–processing models and theories are applied to the understanding of our social behavior. Finally, studies at the neural level seek to inform us about the cortical structures, as well as the way they interact with other, in the mediation of the previous cognitive level. This volume brings together contributions from leading thinkers in both the social cognitive neurosciences and business to provide a comprehensive introduction and overview of a social cognitive neuroscience of the business brain. NOTE: Annals volumes are available for sale as individual books or as a journal. For information on institutional journal subscriptions, please visit www.blackwellpublishing.com/nyas. ACADEMY MEMBERS: Please contact the New York Academy of Sciences directly to place your order (www.nyas.org). Members of the New York Academy of Science receive full–text access to the Annals online and discounts on print volumes. Please visit http://www.nyas.org/MemberCenter/Join.aspx for more information about becoming a member
Resumo:
Advances in cognitive neuroscience and other approaches to understanding human behavior from a biological standpoint are only now beginning to filter into leadership research. The purpose of this introduction to the Leadership Quarterly Special Issue on the Biology of Leadership is to outline the organizational cognitive neuroscience approach to leadership research, and show how such an approach can fruitfully inform both leadership and neuroscientific research. Indeed, we advance the view that the further application of cognitive neuroscientific techniques to leadership research will pay great dividends in our understanding of effective leadership behaviors and as such, a future symbiosis between the two fields is a necessity.
Resumo:
There is growing interest in exploring the potential links between human biology and management and organization studies, which is bringing greater attention to bear on the place of mental processes in explaining human behaviour and effectiveness. The authors define this new field as organizational cognitive neuroscience (OCN), which is in the exploratory phase of its emergence and diffusion. It is clear that there are methodological debates and issues associated with OCN research, and the aim of this paper is to illuminate these concerns, and provide a roadmap for rigorous and relevant future work in the area. To this end, the current reach of OCN is investigated by the systematic review methodology, revealing three clusters of activity, covering the fields of economics, marketing and organizational behaviour. Among these clusters, organizational behaviour seems to be an outlier, owing to its far greater variety of empirical work, which the authors argue is largely a result of the plurality of research methods that have taken root within this field. Nevertheless, all three clusters contribute to a greater understanding of the biological mechanisms that mediate choice and decision-making. The paper concludes that OCN research has already provided important insights regarding the boundaries surrounding human freedom to act in various domains and, in turn, self-determination to influence the workplace. However, there is much to be done, and emerging research of significant interest is highlighted.
Resumo:
From Platonic and Galenic roots, the first well developed ventricular theory of brain function is due to Bishop Nemesius, fourth century C.E. Although more interested in the Christian concept of soul, St. Augustine, too addressed the question of the location of the soul, a problem that has endured in various guises to the present day. Other notable contributions to ventricular psychology are the ninth century C.E. Arabic writer, Qusta ibn Lūqā, and an early European medical text written by the twelfth century C.E. author, Nicolai the Physician. By the time of Albertus Magnus, so-called medieval cell doctrine was a well-developed model of brain function. By the sixteenth century, Vesalius no longer understands the ventricles to be imaginary cavities designed to provide a physical basis for faculty psychology but as fluid-filled spaces in the brain whose function is yet to be determined
Resumo:
From Platonic and Galenic roots, the first well developed ventricular theory of brain function is due to Bishop Nemesius, fourth century C.E. Although more interested in the Christian concept of soul, St. Augustine, too addressed the question of the location of the soul, a problem that has endured in various guises to the present day. Other notable contributions to ventricular psychology are the ninth century C.E. Arabic writer, Qusta ibn Lūqā, and an early European medical text written by the twelfth century C.E. author, Nicolai the Physician. By the time of Albertus Magnus, so-called medieval cell doctrine was a well-developed model of brain function. By the sixteenth century, Vesalius no longer understands the ventricles to be imaginary cavities designed to provide a physical basis for faculty psychology but as fluid-filled spaces in the brain whose function is yet to be determined
Resumo:
Review: A commentary on Teaching statistics using dance and movement by Irving, L.T. (2015). Front. Psychol. 6:50. doi: 10.3389/fpsyg.2015.00050 A case for neuroscience in mathematics education by Susac, A., and Braeutigam, S. (2014). Front. Hum. Neurosci. 8:314. doi: 10.3389/fnhum.2014.00314