11 resultados para Benjamin, of Tudela, active 12th century
em Aston University Research Archive
Resumo:
The production and uses of coal tar are reviewed as are the uses of steroids and cytotoxic agents in the treatment of psoriasis with a review of the condition also. An attempt was made to improve the efficaciousness and cosmetic acceptability of a low temperature tar, by screening fractions of this tar, derived from a variety of separation procedures. The most efficacious fraction was the highest boiling acid fraction, which is believed to consist mainly of mono- and di-hydric phenols. A time and concentration study showed that the optimum regime was the application of a 10% concentration in 5% wool fat in soft, yellow paraffin daily for 21 days. The mouse tail skin was selected as an experimental model, to ascertain the efficaciousness of fractions, because of the similarities between this skin and the psoriatic lesion. The activity of a fraction was monitored by the inducement of a granular layer in the mouse tail epidermis. Because coal tar is not an easy medium to work with, and the active fractions showed no increase in cosmetic acceptability over the parent coal tar, likely coal tar constituents were selected for screening on the basis of phenolic character, and the molecular weight range elucidated by mass spectroscopy. 32 potential anti-psoriatic agents were screened on mouse tail. Two catechols, 3,5-di-t-butyl and 4-t-butyl catechols were active. Other structures showed little or no activity. 24 catechols were screened and two extremely active catechols were discovered, 3-methyl-5-t-octyl and 5-methyl-3-t-octyl catechols. The screening of catechol-rich coal tar fractions and a coal tar fraction which had had the catechols removed by oxidation, showed that some anti-psoriatic activity was contained in the catechol fraction of coal tar. Attempts to elucidate the mode of action of these two compounds met with little success, but two modes of action are suggested.
Resumo:
We studied the effects of the composition of impregnating solution and heat treatment conditions on the activity of catalytic systems for the low-temperature oxidation of CO obtained by the impregnation of Busofit carbon-fiber cloth with aqueous solutions of palladium, copper, and iron salts. The formation of an active phase in the synthesized catalysts at different stages of their preparation was examined with the use of differential thermal and thermogravimetric analyses, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and elemental spectral analysis. The catalytic system prepared by the impregnation of electrochemically treated Busofit with the solutions of PdCl, FeCl, CuBr, and Cu(NO ) and activated under optimum conditions ensured 100% CO conversion under a respiratory regime at both low (0.03%) and high (0.5%) carbon monoxide contents of air. It was found that the activation of a catalytic system at elevated temperatures (170-180°C) leads to the conversion of Pd(II) into Pd(I), which was predominantly localized in a near-surface layer. The promoting action of copper nitrate consists in the formation of a crystalline phase of the rhombic atacamite CuCl(OH). The catalyst surface is finally formed under the conditions of a catalytic reaction, when a joint Pd(I)-Cu(I) active site is formed. © 2014 Pleiades Publishing, Ltd.
Resumo:
Measurement of lung ventilation is one of the most reliable techniques in diagnosing pulmonary diseases. The time-consuming and bias-prone traditional methods using hyperpolarized H 3He and 1H magnetic resonance imageries have recently been improved by an automated technique based on 'multiple active contour evolution'. This method involves a simultaneous evolution of multiple initial conditions, called 'snakes', eventually leading to their 'merging' and is entirely independent of the shapes and sizes of snakes or other parametric details. The objective of this paper is to show, through a theoretical analysis, that the functional dynamics of merging as depicted in the active contour method has a direct analogue in statistical physics and this explains its 'universality'. We show that the multiple active contour method has an universal scaling behaviour akin to that of classical nucleation in two spatial dimensions. We prove our point by comparing the numerically evaluated exponents with an equivalent thermodynamic model. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
Mg-Al hydrotalcite coatings have been grown on alumina via a novel alkali- and nitrate-free impregnation route and subsequent calcination and hydrothermal treatment. The resulting Mg-HT/AlO catalysts significantly outperform conventional bulk hydrotalcites prepared via co-precipitation in the transesterification of C-C triglycerides for fatty acid methyl ester (FAME) production, with rate enhancements increasing with alkyl chain length. This promotion is attributed to improved accessibility of bulky triglycerides to active surface base sites over the higher area alumina support compared to conventional hydrotalcites wherein many active sites are confined within the micropores. © 2014 The Royal Society of Chemistry.
Resumo:
The study reports an advance in designing copper-based redox sensing MRI contrast agents. Although the data demonstrate that copper(II) complexes are not able to compete with lanthanoids species in terms of contrast, the redox-dependent switch between diamagnetic copper(I) and paramagnetic copper(II) yields a novel redox-sensitive contrast moiety with potential for reversibility.
Resumo:
Organic Solar Cells (OSCs) represent a photovoltaic technology with multiple interesting application properties. However, the establishment of this technology into the market is subject to the achievement of operational lifetimes appropriate to their application purposes. Thus, comprehensive understanding of the degradation mechanisms occurring in OSCs is mandatory in both selecting more intrinsically stable components and/or device architectures and implementing strategies that mitigate the encountered stability issues. Inverted devices can suffer from mechanical stress and delamination at the interface between the active layer, e.g. poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM), and the hole transport layer, e.g. poly(3,4-ethylenedioxythiophene):poly(p-styrene sulfonate) (PEDOT:PSS). This work proposes the incorporation of a thin adhesive interlayer, consisting of a diblock copolymer composed of a P3HT block and a thermally-triggerable, alkyl-protected PSS block. In this context, the synthesis of poly(neopentyl p-styrene sulfonate) (PNSS) with controlled molar mass and low dispersity (Ð ≤ 1.50) via Reversible Addition-Fragmentation chain Transfer (RAFT) polymerisation has been extensively studied. Subsequently, Atomic Force Microscopy (AFM) was explored to characterise the thermal deprotection of P3HT-b-PNSS thin layers to yield amphiphilic P3HT-b-PSS, indicating that surface deprotection prior to thermal treatment could occur. Finally, structural variation of the alkyl protecting group in PSS allowed reducing the thermal treatment duration from 3 hours (P3HT-b-PNSS) to 45 minutes for the poly(isobutyl p-styrene sulfonate) (PiBSS) analogous copolymer. Another critical issue regarding the stability of OSCs is the sunlight-driven chemical degradation of the active layer. In the study herein, the combination of experimental techniques and theoretical calculations has allowed identification of the structural weaknesses of poly[(4,4’- bis(2-ethylhexyl) dithieno [3,2-b:2’,3’-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5’-diyl], Si-PCPDTBT, upon photochemical treatment in air. Additionally, the study of the relative photodegradation rates in air of a series of polymers with systematically modified backbones and/or alkyl side chains has shown no direct correlation between chemical structure and stability. It is proposed instead that photostability is highly dependent on the crystalline character of the deposited films. Furthermore, it was verified that photostability of blends based on these polymers is dictated by the (de)stabilising effect that [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) has over each polymer. Finally, a multiscale analysis on the degradation of solar cells based on poly[4,4' bis(2- ethylhexyl) dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-[2,5 bis(3 tetradecylthiophen 2-yl)thiazole[5,4-d]thiazole)-1,8-diyl] and PCBM, indicated that by judicious selection of device layers, architectures, and encapsulation materials, operational lifetimes up to 3.3 years with no efficiency losses can be successfully achieved.