27 resultados para Auto-gasification
em Aston University Research Archive
Resumo:
This research paper presents an examination of the journey to and from crime for autotheft offenders in the UK. For 852 offences, ‘wheel’ distances are calculated for triangles formed by offenders’ home location, theft location, and vehicle disposal location. The study demonstrates typical isosceles mobility triangles; distances travelled to and from home locations are roughly equal, whereas distances between theft and disposal points were shorter. Distances travelled by offenders under 17 years old and offences involving drug and drink were shown to be shorter than comparison groups. Prolifi c offenders tend to travel further, although there is signifi cant variation in this subgroup. Explanations and implications are discussed.
Resumo:
Purpose: A clinical evaluation of the Grand Seiko Auto Ref/Keratometer WAM-5500 (Japan) was performed to evaluate validity and repeatability compared with non-cycloplegic subjective refraction and Javal–Schiotz keratometry. An investigation into the dynamic recording capabilities of the instrument was also conducted. Methods: Refractive error measurements were obtained from 150 eyes of 75 subjects (aged 25.12 ± 9.03 years), subjectively by a masked optometrist, and objectively with the WAM-5500 at a second session. Keratometry measurements from the WAM-5500 were compared to Javal–Schiotz readings. Intratest variability was examined on all subjects, whilst intertest variability was assessed on a subgroup of 44 eyes 7–14 days after the initial objective measures. The accuracy of the dynamic recording mode of the instrument and its tolerance to longitudinal movement was evaluated using a model eye. An additional evaluation of the dynamic mode was performed using a human eye in relaxed and accommodated states. Results: Refractive error determined by the WAM-5500 was found to be very similar (p = 0.77) to subjective refraction (difference, -0.01 ± 0.38 D). The instrument was accurate and reliable over a wide range of refractive errors (-6.38 to +4.88 D). WAM-5500 keratometry values were steeper by approximately 0.05 mm in both the vertical and horizontal meridians. High intertest repeatability was demonstrated for all parameters measured: for sphere, cylinder power and MSE, over 90% of retest values fell within ±0.50 D of initial testing. In dynamic (high-speed) mode, the root-mean-square of the fluctuations was 0.005 ± 0.0005 D and a high level of recording accuracy was maintained when the measurement ring was significantly blurred by longitudinal movement of the instrument head. Conclusion: The WAM-5500 Auto Ref/Keratometer represents a reliable and valid objective refraction tool for general optometric practice, with important additional features allowing pupil size determination and easy conversion into high-speed mode, increasing its usefulness post-surgically following accommodating intra-ocular lens implantation, and as a research tool in the study of accommodation.
Resumo:
For the immune system to function effectively, the body must be able to distinguish foreign antigens from self-antigens. However, the mechanisms which maintain this distinction may break down and result in auto-immune disease in which self-reacting antibodies and T-cells are produced. This article discusses first, the evidence for the existence of human auto-immune disease and second, the auto-immune diseases which have characteristic ocular symptoms.
Resumo:
The objectives of this research were to investigate the parameters affecting the gasification process within downdraft gasifiers using biomass feedstocks. In addition to investigations with an open-core gasifier, a novel open-topped throated gasifier was designed and used. A sampling system was designed and installed to determine the water, tar and particular content of the raw product gas. This permitted evaluation of the effects of process parameters and reactor design on tar and particular production, although a large variation was found for the particulate measurements due to the capture of large particles. For both gasifiers, the gasification process was studied in order to identify and compare the mechanisms controlling the position and shape of the reaction zones. The stability of the reaction zone was found to be governed by the superficial gas velocity within the reactor. A superficial gas velocity below 0.2 Nms-1 resulted in a rising reaction zone in both gasifiers. Turndown is achieved when the rate of char production by flaming pyrolysis equals the rate of char gasification over a range of throughputs. A turndown ratio of 2:1 was achieved for the hybrid-throated gasifier, compared to 1.3:1 for the open-core. It is hypothesized that pyrolysis is a surface area phenomenon, and that in the hybrid gasifier the pyrolysis front can expand to form a dome-shape. The rate of char gasification is believed to increase as the depth of the gasification zone increases. Vibration of the open-core reactor bed decreased the bed pressure drop, reduced the voidage, aided solids flow and gave a minor improvement in the product gas energy content. Insulation improved the performance of both reactors by reducing heat losses resulting in a reduced air to feed ratio requirement. The hybrid gasifier gave a higher energy conversion efficiency, a higher product gas heating value, and a lower tar content than the open-core gasifier due to efficient gas mixing in a high temperature tar cracking region below the throat and reduced heat losses.
Resumo:
The objectives of this research were to investigate the perforamnce of a rubberwood gasifier and engine with electricity generation and to identify opportunities for the implementation of such a system in Malaysia. The experimental work included the design, fabrication and commissioning of a throated downdraft gasifier in Malaysia. The gasifier was subsequently used to investigate the effect of moisture content, dry wood capacity and particle size of rubberwood on gasifier performance. Additional experiments were also conducted to investigate the influence of two different nozzle numbers and two different throat diameters on tar cracking. A total of 101 runs were completed during the duration of the research. From the experimental data, the average mass balance was found to be 92.65%. The average energy balance over the gasifier to hot raw gas was 98.7%, to cold clean gas was 102.4% and over the complete system was 101.9%. The heat loss from the gasifier was estimated to range from 10-26% of the chemical energy of the feedstock. From the downstream operation, the heat loss was estimated to range from 17-37% of the chemical energy of rubberwood feedstock. The maximum throughput for stable operation was found to be 60-70% of the maximum dry wood capacity. The gasifier was found to have a maximum turndown ratio of 5:1. It is also postulated that the phenomenon of turndown of the gasifier is due to a `bubble theory' occurring at the gasification zone, and this hypothesis is explained. For stable power output, the working range of the engine was found to be 5-33.5 kWe. The thermal efficiency and diesel displacement of the engine was found to be 17-18% and 65-70% respectively. The research also showed that rubberwood gasification in Malaysia is feasible if the price of diesel is above MR35/l and the price of wood is below MR120/tonne.
Resumo:
The objective of this study was to design, construct, commission and operate a laboratory scale gasifier system that could be used to investigate the parameters that influence the gasification process. The gasifier is of the open-core variety and is fabricated from 7.5 cm bore quartz glass tubing. Gas cleaning is by a centrifugal contacting scrubber, with the product gas being flared. The system employs an on-line dedicated gas analysis system, monitoring the levels of H2, CO, CO2 and CH4 in the product gas. The gas composition data, as well as the gas flowrate, temperatures throughout the system and pressure data is recorded using a BBC microcomputer based data-logging system. Ten runs have been performed using the system of which six were predominantly commissioning runs. The main emphasis in the commissioning runs was placed on the gas clean-up, the product gas cleaning and the reactor bed temperature measurement. The reaction was observed to occur in a narrow band, of about 3 to 5 particle diameters thick. Initially the fuel was pyrolysed, with the volatiles produced being combusted and providing the energy to drive the process, and then the char product was gasified by reaction with the pyrolysis gases. Normally, the gasifier is operated with reaction zone supported on a bed of char, although it has been operated for short periods without a char bed. At steady state the depth of char remains constant, but by adjusting the air inlet rate it has been shown that the depth of char can be increased or decreased. It has been shown that increasing the depth of the char bed effects some improvement in the product gas quality.
Resumo:
A fluidized bed process development unit of 0.8 m internal diameter was designed on basis of results obtained from a bench scale laboratory unit. For the scaling up empirical models from the literature were used. The process development unit and peripheral equipment were constructed, assembled and commissioned, and instruments were provided for data acquisition. The fluidization characteristics of the reactor were determined and were compared to the design data. An experimental programme was then carried out and mass and energy balances were made for all the runs. The results showed that the most important independent experimental parameter was the air factor, with an optimum at 0.3. The optimum higher heating value of the gas produced was 6.5 MJ/Nm3, while the thermal efficiency was 70%. Reasonably good agreement was found between the experimental results, theoretical results from a thermodynamic model and data from the literature. It was found that the attainment of steady state was very sensitive to a continuous and constant feedstock flowrate, since the slightest variation in feed flow resulted in fluctuations of the gas quality. On the basis of the results a set of empirical relationships was developed, which constitutes an empirical model for the prediction of the performance of fluidized bed gasifiers. This empirical model was supplemented by a design procedure by which fluidized bed gasifiers can be designed and constructed. The design procedure was then extended to cover feedstock feeding and gas cleaning in a conceptual design of a fluidized bed gasification facility. The conceptual design was finally used to perform an economic evaluation of a proposed gasification facility. The economics of this plant (retrofit application) were favourable.
Resumo:
The EU intends to increase the fraction of fuels from biogenic energy sources from 2% in 2005 to 8% in 2020. This means a minimum of 30 million TOE/a of fuels from biomass. This makes technical-scale generation of syngas from high-grade biomass, e.g. straw, hay, bark, or paper/cardboard waste, and the production of synthetic fuels by Fischer-Tropsch (FT) synthesis highly attractive. The BTL concept (Biomass to Liquids) of the Karlsruhe Research Center, labeled bioliq, focuses on this challenge by locally concentrating the biomass energy content by fast pyrolysis in a coke/oil slurry followed by slurry conversion to syngas in a central entrained flow gasifier at 1200C and pressures above 4MPa. FT synthesis generates intermediate products for synthetic fuels. To prevent the sensitive catalysts from being poisoned the syngas must be free of tar and particulates. Trace concentrations of H2S, COS, CS2, HCl, NH3, and HCN must be on the order of a few ppb. Moreover, maximum conversion efficiency will be achieved by cleaning the gas above the synthesis conditions. (T>350C, P>4MPa). The concept of an innovative dry HTHP syngas cleaning process is presented. Based on HT particle filtration and suitable sorption and catalysis processes for the relevant contaminants, an overall concept will be derived, which leads to a syngas quality required for FT synthesis in only two combined stages. Results of filtration experiments on a pilot scale are presented. The influence of temperature on the separation and conversion, respectively, of particulates and gaseous contaminants is discussed on the basis of experimental results obtained on a laboratory and pilot scale. Extensive studies of this concept are performed in a scientific network comprising the Karlsruhe Research Center and five universities; funding is provided by the Helmholtz Association of National Research Centers in Germany.
Resumo:
Summary form only given. Both dispersion management and the use of a nonlinear optical loop mirror (NOLM) as a saturable absorber can improve the performance of a soliton-based communication system. Dispersion management gives the benefits of low average dispersion while allowing pulses with higher powers to propagate, which helps to suppress Gordon-Haus timing jitter without sacrificing the signal-to-noise ratio. The NOLM suppresses the buildup of amplifier spontaneous emission noise and background dispersive radiation which, if allowed to interact with the soliton, can lead to its breakup. We examine optical pulse propagation in dispersion-managed (DM) transmission system with periodically inserted in-line NOLMs. To describe basic features of the signal transmission in such lines, we develop a simple theory based on a variational approach involving Gaussian trial functions. It, has already been proved that the variational method is an extremely effective tool for description of DM solitons. In the work we manage to include in the variational description the point action of the NOLM on pulse parameters, assuming that the Gaussian pulse shape is inherently preserved by propagation through the NOLM. The obtained results are verified by direct numerical simulations
Resumo:
The two main wastes generated from secondary fibre paper mills are rejects (composed mainly of plastics and fibres) and de-inking sludge, both of which are evolved from the pulping process during paper manufacture. The current practice for the disposal of these wastes is either by land-spreading or land-filling. This work explores the gasification of blends of pre-conditioned rejects and de-inking sludge pellets with mixed wood chips in an Imbert type fixed bed downdraft gasifier with a maximum feeding capacity of 10kg/h. The producer gases evolved would generate combined heat and power (CHP) in an internal combustion engine. The results show that as much as 80wt.% of a brown paper mill's rejects (consisting of 20wt.% mixed plastics and 80wt.% paper fibres) could be successfully gasified in a blend with 20wt.% mixed wood chips. The producer gas composition was 16.24% H, 23.34% CO, 12.71% CO 5.21% CH and 42.49% N (v/v%) with a higher heating value of 7.3MJ/Nm. After the removal of tar and water condensate the producer gas was of sufficient calorific value and flow rate to power a 10kWe gas engine. Some blends using rejects from other mill types were not successful, and the limiting factor was usually the agglomeration of plastics present within the fuel.
Resumo:
This research was carried for an EC supported project that aimed to produce ethyl levulinate as a diesel miscible biofuel from biomass by acid hydrolysis. The objective of this research was to explore thermal conversion technologies to recover further diesel miscible biofuels and/or other valuable products from the remaining solid acid hydrolysis residues (AHR). AHR consists of mainly lignin and humins and contains up to 80% of the original energy in the biomass. Fast pyrolysis and pyrolytic gasification of this low volatile content AHR was unsuccessful. However, successful air gasification of AHR gave a low heating value gas for use in engines for power or heat with the aim of producing all the utility requirements in any commercial implementation of the ethyl levulinate production process. In addition, successful fast pyrolysis of the original biomass gave organic liquid yields of up to 63.9 wt.% (dry feed basis) comparable to results achieved using a standard hardwood. The fast pyrolysis liquid can be used as a fuel or upgraded to biofuels. A novel molybdenum carbide catalyst was tested in fast pyrolysis to explore the potential for upgrading. Although there was no deoxygenation, some bio-oil properties were improved including viscosity, pH and homogeneity through decreasing sugars and increasing furanics and phenolics. AHR gasification was explored in a batch gasifier with a comparison with the original biomass. Refractory and low volatile content AHR gave relatively low gas yields (74.21 wt.%), low tar yields (5.27 wt.%) and high solid yields (20.52 wt.%). Air gasification gave gas heating values of around 5MJ/NM3, which is a typical value, but limitations of the equipment available restricted the extent of process and product analysis. In order to improve robustness of AHR powder for screw feeding into gasifiers, a new densification technique was developed based on mixing powder with bio-oil and curing the mixture at 150°C to polymerise the bio-oil.
Resumo:
Background: The aim was to evaluate the validity and repeatability of the auto-refraction function of the Nidek OPD-Scan III (Nidek Technologies, Gamagori, Japan) compared with non-cycloplegic subjective refraction. The Nidek OPD-Scan III is a new aberrometer/corneal topographer workstation based on the skiascopy principle. It combines a wavefront aberrometer, topographer, autorefractor, auto keratometer and pupillometer/pupillographer. Methods: Objective refraction results obtained using the Nidek OPD-Scan III were compared with non-cycloplegic subjective refraction for 108 eyes of 54 participants (29 female) with a mean age of 23.7±9.5 years. Intra-session and inter-session variability were assessed on 14 subjects (28 eyes). Results: The Nidek OPD-Scan III gave slightly more negative readings than results obtained by subjective refraction (Nidek mean difference -0.19±0.36 DS, p<0.01 for sphere; -0.19±0.35 DS, p<0.01 for mean spherical equivalent; -0.002±0.23 DC, p=0.91 for cylinder; -0.06±0.38 DC, p=0.30 for J0 and -0.36±0.31 DC for J45, p=0.29). Auto-refractor results for 74 per cent of spherical readings and 60 per cent of cylindrical powers were within±0.25 of subjective refraction. There was high intra-session and inter-session repeatability for all parameters; 90 per cent of inter-session repeatability results were within 0.25 D. Conclusion: The Nidek OPD-Scan III gives valid and repeatable measures of objective refraction when compared with non-cycloplegic subjective refraction. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.
Resumo:
Greenhouse gas emissions from fertiliser production are set to increase before stabilising due to the increasing demand to secure sustainable food supplies for a growing global population. However, avoiding the impacts of climate change requires all sectors to decarbonise by a very high level within several decades. Economically viable carbon reductions of substituting natural gas reforming with biomass gasification for ammonia production are assessed using techno-economic and life cycle assessment. Greenhouse gas savings of 65% are achieved for the biomass gasification system and the internal rate of return is 9.8% at base-line biomass feedstock and ammonia prices. Uncertainties in the assumptions have been tested by performing sensitivity analysis, which show, for example with a ±50% change in feedstock price, the rate of return ranges between -0.1% and 18%. It would achieve its target rate of return of 20% at a carbon price of £32/t CO, making it cost competitive compared to using biomass for heat or electricity. However, the ability to remain competitive to investors will depend on the volatility of ammonia prices, whereby a significant decrease would require high carbon prices to compensate. Moreover, since no such project has been constructed previously, there is high technology risk associated with capital investment. With limited incentives for industrial intensive energy users to reduce their greenhouse gas emissions, a sensible policy mechanism could target the support of commercial demonstration plants to help ensure this risk barrier is resolved. © 2013 The Authors.
Resumo:
This paper provides a preliminary comparative longitudinal analysis of the impact on workers made redundant due to the closure of the Mitsubishi plant in Adelaide and the MG Rover plant in Birmingham. Longitudinal surveys of ex-workers from both firms were undertaken over a 12-month period in order to assess the process of labour market adjustment. In the Mitsubishi case, given the skills shortage the state of Adelaide was facing, together with the considerable growth in mining and defence industries, it would have been more appropriate if policy intervention had been redirected to further training or re-skilling opportunities for redundant workers. This opportunity was effectively missed and as a result more workers left the workforce, most notably for retirement, than could have otherwise been the case. The MG Rover case was seen as a more successful example of policy intervention, with greater funding assistance available and targeted support available, and with more emphasis on re-training needs to assist adjustment. However, despite the assistance offered and the rhetoric of successful adjustment in both cases, the majority of workers have nevertheless experienced deterioration in their circumstances particularly in the Australian case where casual and part-time work were often the only work that could be obtained. Even in the UK case, where more funding assistance was offered, a majority of workers reported a decline in earnings and a rise in job insecurity. This suggests that a reliance on the flexible labour market is insufficient to promote adjustment, and that more active policy intervention is needed especially in regard to further up-skilling.