2 resultados para Algebraic plane curves
em Aston University Research Archive
Resumo:
Small scale laboratory experiments, in which the specimen is considered to represent an element of soil in the soil mass, are essential to the evolution of fundamental theories of mechanical behaviour. In this thesis, plane strain and axisymmetric compression tests, performed on a fine sand, are reported and the results are compared with various theoretical predictions. A new apparatus is described in which cuboidal samples can be tested in either axisymmetric compression or plane strain. The plane strain condition is simulated either by rigid side platens, in the conventional manner, or by flexible side platens which also measure the intermediate principal stress. Close control of the initial porosity of the specimens is achieved by a vibratory method of sample preparation. The strength of sand is higher in plane strain than in axisymmetric compression, and the strains required to mobilize peak strength are much smaller. The difference between plane strain and axisymmetric compression behaviour is attributed to the restrictions on particle movement enforced by the plane strain condition; this results in an increase in the frictional component of shear strength. The stress conditions at failure in plane strain, including the intermediate principal stress, are accurately predicted by a theory based on the stress- dilatancy interpretation of Mohr's circles. Detailed observations of rupture modes are presented and measured rupture plane inclinations are predicted by the stress-dilatancy theory. Although good correlation with the stress-dilatancy theory is obtained during virgin loading, in both axisymmetric compression and plane strain, the stress-dilatancy rule is only obeyed during reloading if the specimen has been unloaded to approximate ambient stress conditions. The shape of the stress-strain curves during pre-peak deformation, in both plane strain and axisymmetric compression, is accurately described bv a combined parabolic-hyperbolic specification.
Resumo:
The stability characteristics of an incompressible viscous pressure-driven flow of an electrically conducting fluid between two parallel boundaries in the presence of a transverse magnetic field are compared and contrasted with those of Plane Poiseuille flow (PPF). Assuming that the outer regions adjacent to the fluid layer are perfectly electrically insulating, the appropriate boundary conditions are applied. The eigenvalue problems are then solved numerically to obtain the critical Reynolds number Rec and the critical wave number ac in the limit of small Hartmann number (M) range to produce the curves of marginal stability. The non-linear two-dimensional travelling waves that bifurcate by way of a Hopf bifurcation from the neutral curves are approximated by a truncated Fourier series in the streamwise direction. Two and three dimensional secondary disturbances are applied to both the constant pressure and constant flux equilibrium solutions using Floquet theory as this is believed to be the generic mechanism of instability in shear flows. The change in shape of the undisturbed velocity profile caused by the magnetic field is found to be the dominant factor. Consequently the critical Reynolds number is found to increase rapidly with increasing M so the transverse magnetic field has a powerful stabilising effect on this type of flow.