5 resultados para Abundance, diatoms including resting stage per unit dry sediment mass

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of studies of the effects of environmental factors on lichen growth have been carried out in the field. Growth of lichens in the field has been measured as absolute growth rate (e.g., length growth, radial growth, diameter growth, area growth, or dry weight gain per unit of time) or as a relative growth rate, expressed per unit of thallus area or weight, e.g., thallus specific weight. Seasonal fluctuations in growth in the field often correlate best with changes in average or total rainfall or frequency of rain events through the year. In some regions of the world, temperature is also an important climatic factor influencing growth. Interactions between microclimatic factors such as light intensity, temperature, and moisture are particularly important in determining local differences in growth especially in relation to aspect and slope of rock surface, or height on a tree. Factors associated with the substratum including type, chemistry, texture, and porosity can all influence growth. In addition, growth can be influenced by the degree of nutrient enrichment of the substratum associated with bird droppings, nitrogen, phosphate, salinity, or pollution. Effects of environmental factors on growth can act directly to restrict species distribution or indirectly by altering the competitive balance among different species in a community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms involved in the production of chromate-phosphate conversion coatings on aluminium have been investigated. A sequence of coating nucleation and growth has been outlined and the principle roles of the constituent ingredients of the chromate-phosphate solution have been shown. The effect of dissolved aluminium has been studied and its role in producing sound conversion coatings has been shown. Metallic contamination has been found to have a dramatic influence on chromate-phosphate coatings when particular levels have been exceeded. Coating formation was seen to be affected in proportion to the level of contaminaton; no evidence of sudden failure was noted. The influence of substrate and the effect of an acidic cleaner prior to conversion coating have been studied and explained. It was found that the cleaner ages rapidly and that this must .be allowed for when attempting to reproduce industrial conditions in the laboratory. A study was carried out on the flowing characteristics of polyester powders of various size distributions as they melt using the hot-stage microscopy techniques developed at Aston. It was found that the condition of the substrate (ie extent of pretreatment), had a significant effect on particle flow. This was explained by considering the topography of the substrate surface. A number of 'low-bake' polyester powders were developed and tested for mechanical, physical and chemical resistance. The best formulation had overall properties which were as good as the standard polyester in many respects. However chemical resistance was found to be slightly lower. The charging characteristics of powder paints during application by means of electrostatic spraying was studied by measuring the charge per unit mass and relating this to the surface area. A high degree of correlation was found between charge carried and surface area, and the charge retained was related to the powder's formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we demonstrate the integration of a 3D hydrogel matrix within a hollow core photonic crystal fibre (HC-PCF). In addition, we also show the fluorescence of Cy5-labelled DNA molecules immobilized within the hydrogel formed in two different types of HC-PCF. The 3D hydrogel matrix is designed to bind with the amino groups of biomolecules using an appropriate cross-linker, providing higher sensitivity and selectivity than the standard 2D coverage, enabling a greater number of probe molecules to be available per unit area. The HC-PCFs, on the other hand, can be designed to maximize the capture of fluorescence to improve sensitivity and provide longer interaction lengths. This could enable the development of fibre-based point-of-care and remote systems, where the enhanced sensitivity would relax the constraints placed on sources and detectors. In this paper, we will discuss the formation of such polyethylene glycol diacrylate (PEGDA) hydrogels within a HC-PCF, including their optical properties such as light propagation and auto-fluorescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advancing (θA) and receding (θR) contact angles were measured with several probe liquids on the external facets (201), (001), (011), and (110) of macroscopic form I paracetamol crystals as well as the cleaved (internal) facet (010). For the external crystal facets, dispersive surface energies γd calculated from the contact angles were found to be similar (34 ± 1 mJ/m2), while the polar components varied significantly. Cleaving the crystals exposed a more apolar (010) surface with very different surface properties, including γd = 45 ± 1 mJ/m2. The relative surface polarity (γp/γ) of the facets in decreasing order was (001) > (011) > (201) > (110) > (010), which agreed with the fraction of exposed polar hydroxyl groups as determined from C and O 1s X-ray photoelectron spectroscopy (XPS) spectra, and could be correlated with the number of non-hydrogen-bonded hydroxyl groups per unit area present for each crystal facet, based on the known crystal structures. In conclusion, all facets of form I paracetamol crystals examined exhibited anisotropic wetting behavior and surface energetics that correlated to the presence of surface hydroxyl groups.  © 2006 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper offers a methodological approach towards the estimation and definition of enthalpies constituting an energy balance around a fast pyrolysis experiment conducted in a laboratory scale fluid bed with a capacity of 1 kg/ h. Pure N2 was used as fluidization medium at atmospheric pressure and the operating temperature (∼500°C) was adjusted with electrical resistors. The biomass feedstock type that was used was beech wood. An effort was made to achieve a satisfying 92.5% retrieval of products (dry basis mass balance) with the differences mainly attributed to loss of some bio-oil constituents into the quenching medium, ISOPAR™. The chemical enthalpy recovery for bio-oil, char and permanent gases is calculated 64.6%, 14.5% and 7.1%, respectively. All the energy losses from the experimental unit into the environment, namely the pyrolyser, cooling unit etc. are discussed and compared to the heat of fast pyrolysis that was calculated at 1123.5 kJ per kg of beech wood. This only represents 2.4% of the biomass total enthalpy or 6.5% its HHV basis. For the estimation of some important thermo-physical properties such as heat capacity and density, it was found that using data based on the identified compounds from the GC/MS analysis is very close to the reference values despite the small fraction of the bio-oil components detected. The methodology and results can help as a starting point for the proper design of fast pyrolysis experiments, pilot and/or industrial scale plants.