57 resultados para 380305 Knowledge Representation and Machine Learning

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the treatment and monitoring of Parkinson's disease (PD) to be scientific, a key requirement is that measurement of disease stages and severity is quantitative, reliable, and repeatable. The last 50 years in PD research have been dominated by qualitative, subjective ratings obtained by human interpretation of the presentation of disease signs and symptoms at clinical visits. More recently, “wearable,” sensor-based, quantitative, objective, and easy-to-use systems for quantifying PD signs for large numbers of participants over extended durations have been developed. This technology has the potential to significantly improve both clinical diagnosis and management in PD and the conduct of clinical studies. However, the large-scale, high-dimensional character of the data captured by these wearable sensors requires sophisticated signal processing and machine-learning algorithms to transform it into scientifically and clinically meaningful information. Such algorithms that “learn” from data have shown remarkable success in making accurate predictions for complex problems in which human skill has been required to date, but they are challenging to evaluate and apply without a basic understanding of the underlying logic on which they are based. This article contains a nontechnical tutorial review of relevant machine-learning algorithms, also describing their limitations and how these can be overcome. It discusses implications of this technology and a practical road map for realizing the full potential of this technology in PD research and practice. © 2016 International Parkinson and Movement Disorder Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, we have seen an explosion of interest in ontologies as artifacts to represent human knowledge and as critical components in knowledge management, the semantic Web, business-to-business applications, and several other application areas. Various research communities commonly assume that ontologies are the appropriate modeling structure for representing knowledge. However, little discussion has occurred regarding the actual range of knowledge an ontology can successfully represent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since much knowledge is tacit, eliciting knowledge is a common bottleneck during the development of knowledge-based systems. Visual interactive simulation (VIS) has been proposed as a means for eliciting experts’ decision-making by getting them to interact with a visual simulation of the real system in which they work. In order to explore the effectiveness and efficiency of VIS based knowledge elicitation, an experiment has been carried out with decision-makers in a Ford Motor Company engine assembly plant. The model properties under investigation were the level of visual representation (2-dimensional, 2½-dimensional and 3-dimensional) and the model parameter settings (unadjusted and adjusted to represent more uncommon and extreme situations). The conclusion from the experiment is that using a 2-dimensional representation with adjusted parameter settings provides the better simulation-based means for eliciting knowledge, at least for the case modelled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the knowledge elicitation and knowledge representation aspects of a system being developed to help with the design and maintenance of relational data bases. The size algorithmic components. In addition, the domain contains multiple experts, but any given expert's knowledge of this large domain is only partial. The paper discusses the methods and techniques used for knowledge elicitation, which was based on a "broad and shallow" approach at first, moving to a "narrow and deep" one later, and describes the models used for knowledge representation, which were based on a layered "generic and variants" approach. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a model for measuring personal knowledge development in online learning environments. It is based on Nonaka‘s SECI model of organisational knowledge creation. It is argued that Socialisation is not a relevant mode in the context of online learning and was therefore not covered in the measurement instrument. Therefore, the remaining three of SECI‘s knowledge conversion modes, namely Externalisation, Combination, and Internalisation were used and a measurement instrument was created which also examines the interrelationships between the three modes. Data was collected using an online survey, in which online learners report on their experiences of personal knowledge development in online learning environments. In other words, the instrument measures the magnitude of online learners‘ Externalisation and combination activities as well as their level of internalisation, which is the outcome of their personal knowledge development in online learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ontologies have become the knowledge representation medium of choice in recent years for a range of computer science specialities including the Semantic Web, Agents, and Bio-informatics. There has been a great deal of research and development in this area combined with hype and reaction. This special issue is concerned with the limitations of ontologies and how these can be addressed, together with a consideration of how we can circumvent or go beyond these constraints. The introduction places the discussion in context and presents the papers included in this issue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benchmarking exercises have become increasingly popular within the sphere of regional policy making. However, most exercises are restricted to comparing regions within a particular continental bloc or nation.This article introduces the World Knowledge Competitiveness Index (WKCI), which is one of the very few benchmarking exercises established to compare regions across continents.The article discusses the formulation of the WKCI and analyzes the results of the most recent editions.The results suggest that there are significant variations in the knowledge-based regional economic development models at work across the globe. Further analysis also indicates that Silicon Valley, as the highest ranked WKCI region, holds a unique economic position among the globe’s leading regions. However, significant changes in the sources of regional competitiveness are evolving as a result of the emergence of new regional hot spots in Asia. It is concluded that benchmarking is imperative to the learning process of regional policy making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. Most existing systems concentrate either on mining algorithms or on visualization techniques. Though visual methods developed in information visualization have been helpful, for improved understanding of a complex large high-dimensional dataset, there is a need for an effective projection of such a dataset onto a lower-dimension (2D or 3D) manifold. This paper introduces a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualization domain. The framework follows Shneiderman’s mantra to provide an effective user interface. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection methods, such as Generative Topographic Mapping (GTM) and Hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, billboarding, and user interaction facilities, to provide an integrated visual data mining framework. Results on a real life high-dimensional dataset from the chemoinformatics domain are also reported and discussed. Projection results of GTM are analytically compared with the projection results from other traditional projection methods, and it is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retrospective clinical data presents many challenges for data mining and machine learning. The transcription of patient records from paper charts and subsequent manipulation of data often results in high volumes of noise as well as a loss of other important information. In addition, such datasets often fail to represent expert medical knowledge and reasoning in any explicit manner. In this research we describe applying data mining methods to retrospective clinical data to build a prediction model for asthma exacerbation severity for pediatric patients in the emergency department. Difficulties in building such a model forced us to investigate alternative strategies for analyzing and processing retrospective data. This paper describes this process together with an approach to mining retrospective clinical data by incorporating formalized external expert knowledge (secondary knowledge sources) into the classification task. This knowledge is used to partition the data into a number of coherent sets, where each set is explicitly described in terms of the secondary knowledge source. Instances from each set are then classified in a manner appropriate for the characteristics of the particular set. We present our methodology and outline a set of experiential results that demonstrate some advantages and some limitations of our approach. © 2008 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a certain automobile factory, batch-painting of the body types in colours is controlled by an allocation system. This tries to balance production with orders, whilst making optimally-sized batches of colours. Sequences of cars entering painting cannot be optimised for easy selection of colour and batch size. `Over-production' is not allowed, in order to reduce buffer stocks of unsold vehicles. Paint quality is degraded by random effects. This thesis describes a toolkit which supports IKBS in an object-centred formalism. The intended domain of use for the toolkit is flexible manufacturing. A sizeable application program was developed, using the toolkit, to test the validity of the IKBS approach in solving the real manufacturing problem above, for which an existing conventional program was already being used. A detailed statistical analysis of the operating circumstances of the program was made to evaluate the likely need for the more flexible type of program for which the toolkit was intended. The IKBS program captures the many disparate and conflicting constraints in the scheduling knowledge and emulates the behaviour of the program installed in the factory. In the factory system, many possible, newly-discovered, heuristics would be awkward to represent and it would be impossible to make many new extensions. The representation scheme is capable of admitting changes to the knowledge, relying on the inherent encapsulating properties of object-centres programming to protect and isolate data. The object-centred scheme is supported by an enhancement of the `C' programming language and runs under BSD 4.2 UNIX. The structuring technique, using objects, provides a mechanism for separating control of expression of rule-based knowledge from the knowledge itself and allowing explicit `contexts', within which appropriate expression of knowledge can be done. Facilities are provided for acquisition of knowledge in a consistent manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we report a comparative analysis of the factors which contribute to the innovation performance of manufacturing firms in the US state of Georgia, and three European regions, the UK regions of Wales and the West Midlands, and the Spanish region of Catalonia. We consider the factors which shape firms’ ability to generate new products and processes and undertake various forms of organisational and structural change. We are particularly concerned with how firms collect the knowledge on which they base their innovation and their effectiveness in translating that knowledge into new innovations. Three main empirical conclusions result. First, US firms have more widespread links to external knowledge sources than those in Europe and notably the universities make a greater contribution to innovation in the US than in Europe. Second, UK firms prove more effective at capturing synergies between their innovation activities than US and Catalan firms. Third, firms’ operating environment proves more conducive to innovation in the US than in either the UK regions or Catalonia. Our results suggest the potential for mutual learning. For the UK there are lessons in terms of the way in which the universities in Georgia are supporting innovation. For firms in Georgia and in Catalonia the potential lessons are more strategic or organisational and relate to how they can better capture potential synergies between their innovation activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The literature on interfirm networks devotes scant attention to the ways collaborating firms combine and integrate the knowledge they share and to the subsequent learning outcomes. This study aims to investigate how motorsport companies use network ties to share and recombine knowledge and the learning that occurs both at the organizational and dyadic network levels. Design/methodology/approach – The paper adopts a qualitative and inductive approach with the aim of developing theory from an in-depth examination of the dyadic ties between motorsport companies and the way they share and recombine knowledge. Findings – The research shows that motorsport companies having substantial competences at managing knowledge flows do so by getting advantage of bridging ties. While bridging ties allow motorsport companies to reach distant and diverse sources of knowledge, their strengthening and the formation of relational capital facilitate the mediation and overlapping of that knowledge. Research limitations/implications – The analysis rests on a qualitative account in a single industry and does not take into account different types of inter-firm networks (e.g. alliances; constellations; consortia etc.) and governance structures. Cross-industry analyses may provide a more fine-grained picture of the practices used to recombine knowledge and the ideal composition of inter-firm ties. Practical implications – This study provides some interesting implications for scholars and managers concerned with the management of innovation activities at the interfirm level. From a managerial point of view, the recognition of the different roles played by network spanning connections is particularly salient and raises issues concerning the effective design and management of interfirm ties. Originality/value – Although much of the literature emphasizes the role of bridging ties in connecting to diverse pools of knowledge, this paper goes one step further and investigates in more depth how firms gather and combine distant and heterogeneous sources of knowledge through the use of strengthened bridging ties and a micro-context conducive to high quality relationships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore the causal links between service firms' knowledge investments, their innovation outputs and business growth based on a bespoke survey of around 1100 UK service businesses. We combine the activity based approach of the innovation value chain with firms' external links at each stage of the innovation process. This introduces the concept of 'encoding' relationships through which learning improves the effectiveness of firms' innovation processes. Our econometric results emphasise the importance of external openness in the initial, exploratory phase of the innovation process and the significance of internal openness (e.g. team working) in later stages of the process. In-house design capacity is strongly linked to a firm's ability to absorb external knowledge for innovation. Links to customers are important in the exploratory stage of the innovation process, but encoding linkages with private and public research organisations are more important in developing innovation outputs. Business growth is related directly to both the extent of firms' service innovation as well as the diversity of innovation, reflecting marketing, strategic and business process change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite years of effort in building organisational taxonomies, the potential of ontologies to support knowledge management in complex technical domains is under-exploited. The authors of this chapter present an approach to using rich domain ontologies to support sense-making tasks associated with resolving mechanical issues. Using Semantic Web technologies, the authors have built a framework and a suite of tools which support the whole semantic knowledge lifecycle. These are presented by describing the process of issue resolution for a simulated investigation concerning failure of bicycle brakes. Foci of the work have included ensuring that semantic tasks fit in with users’ everyday tasks, to achieve user acceptability and support the flexibility required by communities of practice with differing local sub-domains, tasks, and terminology.